Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Michael Neubrand/Publikationen: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
KKeine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 63: Zeile 63:
* Michael Neubrand & Annegret Christiansen (1996). 'Ich sitze in einer Million!': Aufbau eines Millionenwürfels im 4. Schuljahr. Mathematische Unterrichtspraxis 17 (4), 9 - 16.
* Michael Neubrand & Annegret Christiansen (1996). 'Ich sitze in einer Million!': Aufbau eines Millionenwürfels im 4. Schuljahr. Mathematische Unterrichtspraxis 17 (4), 9 - 16.
* Günter Graumann, [[Reinhard Hölzl]], Konrad Krainer, Michael Neubrand & [[Horst Struve]] (1996). Tendenzen der Geometriedidaktik der letzten 20 Jahre. Journal für Mathematik- Didaktik 17, 163 - 237.
* Günter Graumann, [[Reinhard Hölzl]], Konrad Krainer, Michael Neubrand & [[Horst Struve]] (1996). Tendenzen der Geometriedidaktik der letzten 20 Jahre. Journal für Mathematik- Didaktik 17, 163 - 237.
* Michael Neubrand (1997). Definition - Satz - Beweis: Was kann daran allgemeinbildend sein? In: R. Biehler & H.N. Jahnke (Hrsg.), Mathematische Allgemeinbildung in der Kontroverse - Materialien eines Symposiums am 24.Juni 1996 am Zentrum für inter- disziplinäre Forschung der Universität Bielefeld (= IDM - Occasional Paper Nr. 193) (S. 13 - 26). Bielefeld: Institut für Didaktik der Mathematik der Universität,
* Michael Neubrand (1997). Definition - Satz - Beweis: Was kann daran allgemeinbildend sein? In: R. Biehler & [[Hans Niels Jahnke|H.N. Jahnke]] (Hrsg.), Mathematische Allgemeinbildung in der Kontroverse - Materialien eines Symposiums am 24.Juni 1996 am Zentrum für inter- disziplinäre Forschung der Universität Bielefeld (= IDM - Occasional Paper Nr. 193) (S. 13 - 26). Bielefeld: Institut für Didaktik der Mathematik der Universität,
auch in: Zeitschrift für Kultur- und Bildungswissenschaften - Flensburger Universitäts- zeitschrift 3, 29 - 42 (1997).
auch in: Zeitschrift für Kultur- und Bildungswissenschaften - Flensburger Universitäts- zeitschrift 3, 29 - 42 (1997).
* Michael Neubrand (1997). Bemerkungen zum vorangehenden Diskussionsbeitrag von Heinrich Bauersfeld. Journal für Mathematik-Didaktik 18, 248.
* Michael Neubrand (1997). Bemerkungen zum vorangehenden Diskussionsbeitrag von Heinrich Bauersfeld. Journal für Mathematik-Didaktik 18, 248.
Zeile 143: Zeile 143:
* MartinBrunner,MareikeKunter,StefanKrauss,JürgenBaumert,WernerBlum,Thamar Dubberke, Alexander Jordan, Uta Klusmann, Yi-Miau Tsai & Michael Neubrand (2006). Welche Zusammenhänge bestehen zwischen dem fachspezifischen Professionswissen vom Mathematiklehrkräften und ihrer Ausbildung sowie beruflichen Fortbildung? Zeitschrift für Erziehungswissenschaft 9 (4), 521 - 54.
* MartinBrunner,MareikeKunter,StefanKrauss,JürgenBaumert,WernerBlum,Thamar Dubberke, Alexander Jordan, Uta Klusmann, Yi-Miau Tsai & Michael Neubrand (2006). Welche Zusammenhänge bestehen zwischen dem fachspezifischen Professionswissen vom Mathematiklehrkräften und ihrer Ausbildung sowie beruflichen Fortbildung? Zeitschrift für Erziehungswissenschaft 9 (4), 521 - 54.
* Michael Neubrand(2007). Begründe, dass es unendlich viele Primzahlen gibt! Studentisches Umgehen mit einem klassischen Beweis. In: [[Andreas Büchter|A. Büchter]], H. Humenberger, St. Hußmann & S. Prediger (Hrsg.), Realitätsnaher Mathematikunterricht – vom Fach aus und für die Praxis. Festschrift für Hans-Wolfgang Henn zum 60. Geburtstag. Hildesheim & Berlin: Franzbecker 2007, S. 277 - 285.
* Michael Neubrand(2007). Begründe, dass es unendlich viele Primzahlen gibt! Studentisches Umgehen mit einem klassischen Beweis. In: [[Andreas Büchter|A. Büchter]], H. Humenberger, St. Hußmann & S. Prediger (Hrsg.), Realitätsnaher Mathematikunterricht – vom Fach aus und für die Praxis. Festschrift für Hans-Wolfgang Henn zum 60. Geburtstag. Hildesheim & Berlin: Franzbecker 2007, S. 277 - 285.
* Michael Neubrand & [[Johanna Neubrand]](2007).MathematischeLeistungenund mathematischer Unterricht am Gymnasium nach den Ergebnissen von PISA. In: S. Jahnke-Klein, H. Kiper & L. Freisel (Hrsg.), Gymnasium heute: Zwischen Elitebildung und Förderung der Vielen S. 93 - 109). Baltmannsweiler: Schneider Verlag Hohengehren.
* Michael Neubrand & [[Johanna Neubrand]](2007).MathematischeLeistungenund mathematischer Unterricht am Gymnasium nach den Ergebnissen von PISA. In: [[Sylvia Jahnke-Klein|S. Jahnke-Klein]], H. Kiper & L. Freisel (Hrsg.), Gymnasium heute: Zwischen Elitebildung und Förderung der Vielen S. 93 - 109). Baltmannsweiler: Schneider Verlag Hohengehren.
* [[Johanna Neubrand]] & Michael Neubrand(2007). Geometrie: Was sollen Haupt- schülerinnen und -Schüler wissen? Beispiele für die Vernetzung praxisorientierten Grundwissens. Lernchancen 55, 28 - 33.
* [[Johanna Neubrand]] & Michael Neubrand(2007). Geometrie: Was sollen Haupt- schülerinnen und -Schüler wissen? Beispiele für die Vernetzung praxisorientierten Grundwissens. Lernchancen 55, 28 - 33.
* Michael Neubrand(2007). Dimensionen des Lehrerwissens: Ein Gespräch über die Lehrerstudie COACTIV und das Professionswissen von Lehrkräften. (Interview). forum schule – Magazin für Lehrerinnen und Lehrer, März 2007, 24 - 25.
* Michael Neubrand(2007). Dimensionen des Lehrerwissens: Ein Gespräch über die Lehrerstudie COACTIV und das Professionswissen von Lehrkräften. (Interview). forum schule – Magazin für Lehrerinnen und Lehrer, März 2007, 24 - 25.
Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü