1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[gesichtete Version] | [gesichtete Version] |
Keine Bearbeitungszusammenfassung |
|||
Zeile 97: | Zeile 97: | ||
'''Definition''':<br /> | '''Definition''':<br /> | ||
: Es sei <math>n\in {{\mathbb{N}}^{*}}</math> (also <math>n>0</math>), <math>{{A}_{1}},\ \ldots ,\ {{A}_{n}},B</math> seien nicht leere Mengen, und es sei <math>f\,:{{A}_{1}}\times \ldots \times {{A}_{n}}\to B</math>.<br /> | : Es sei <math>n\in {{\mathbb{N}}^{*}}</math> (also <math>n>0</math>), <math>{{A}_{1}},\ \ldots ,\ {{A}_{n}},B</math> seien nicht leere Mengen, und es sei <math>f\,:{{A}_{1}}\times \ldots \times {{A}_{n}}\to B</math>.<br /> | ||
: | : <math>f</math> ist dann eine '''<math>n</math>-stellige Funktion'''. <br /><br /> | ||
* Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>. | * Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>. | ||
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen, was streng genommen nicht korrekt ist, weil ja nicht die Funktion „Veränderliche“ hat, sondern die Funktionswerte. | * Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen, was streng genommen nicht korrekt ist, weil ja nicht die Funktion „Veränderliche“ hat, sondern die Funktionswerte. | ||
* Mit <math>f({{x}_{1}},\ldots ,{{x}_{2}})=:y</math> ist <math>({{x}_{1}},\ldots ,{{x}_{2}},y)=(({{x}_{1}},\ldots ,{{x}_{2}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''. | * Mit <math>f({{x}_{1}},\ldots ,{{x}_{2}})=:y</math> ist <math>({{x}_{1}},\ldots ,{{x}_{2}},y)=(({{x}_{1}},\ldots ,{{x}_{2}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''. | ||
== Literatur == | == Literatur == | ||
* Deiser, Oliver [2010]: ''Einführung in die Mengenlehre''. Berlin / Heidelberg: Springer (3., korrigierte Auflage; 1. Auflage 2000; 2., korrigierte und erheblich erweiterte Auflage 2004). | * Deiser, Oliver [2010]: ''Einführung in die Mengenlehre''. Berlin / Heidelberg: Springer (3., korrigierte Auflage; 1. Auflage 2000; 2., korrigierte und erheblich erweiterte Auflage 2004). |