Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Baustelle:Funktion: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 76: Zeile 76:
| Es sei <math>R</math> eine (binäre) Relation. Dann gilt:
| Es sei <math>R</math> eine (binäre) Relation. Dann gilt:
|-
|-
| (1) <math>R</math> ist genau dann '''linkseindeutig''', wenn für alle <math>{{x}_{1}},{{x}_{2}},y</math> aus <math>{{x}_{1}}Ry\wedge {{x}_{2}}Ry</math> stets  <math>{{x}_{1}}={{x}_{2}}</math> folgt.
| (1) <math>R</math> ist genau dann '''linkseindeutig''', wenn für alle <math>{{x}_{1}},{{x}_{2}},y</math> gilt:
::: aus <math>{{x}_{1}}Ry\wedge {{x}_{2}}Ry</math> folgt stets  <math>{{x}_{1}}={{x}_{2}}</math>.
|-
|-
| (2) <math>R</math> ist genau dann '''rechtseindeutig''', wenn für alle <math>x,{{y}_{1}},{{y}_{2}}</math> aus <math>xR{{y}_{1}}\wedge xR{{y}_{2}}</math> stets  <math>{{y}_{1}}={{y}_{2}}</math> folgt.
| (2) <math>R</math> ist genau dann '''rechtseindeutig''', wenn für alle <math>x,{{y}_{1}},{{y}_{2}}</math> gilt:
::: aus <math>xR{{y}_{1}}\wedge xR{{y}_{2}}</math> folgt stets  <math>{{y}_{1}}={{y}_{2}}</math>.
|-
|-
| (3) <math>R</math> ist genau dann '''injektiv''', wenn <math>R</math> sowohl linkseindeutig als auch rechtseindeutig ist.
| (3) <math>R</math> ist genau dann '''injektiv''', wenn <math>R</math> sowohl linkseindeutig als auch rechtseindeutig ist.
|}
|}
<big>''(Es folgen weitere Definitionen, Kommentierungen und Veranschaulichungen.)''</big>
== Funktionen haben viele Gesichter ==
===Grundsätzliches===
===Beispiele===
====...====
====...====
====Funktionsgraph als Funktion====
====Funktionsplot als Funktion====
====Digitalisierung und Diskretisierung als Funktionen====
====Hörbare Funktionen====
====Sichtbare Funktionen====


== Funktionen haben viele Gesichter ==


== Literatur ==
== Literatur ==
Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü