Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Maria Specovius-Neugebauer/Publikationen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
  • J. Frehse, M. Specovius-Neugebauer: Existence of Regular Solutions to a Class of Parabolic Systems in Two Space Dimensions with Critical Growth Behaviour, submitted
  • S.A. Nazarov, J. Sokolowski, M. Specovius-Neugebauer Polarization matrices in anisotropic heterogeneous elasticityto appear in As. Anal.
  • J. Frehse, M. Specovius-Neugebauer: Existence of Hölder Continuous Young Measure Solutions to Coercive Non-Monotone Parabolic Systems in Two Space Dimensions, submitted
  • S.A. Nazarov, M. Specovius-Neugebauer: Modeling of cracks with nonlinear effects at the tip zones and the generalized energy criterion, submitted
  • K.I. Pileckas, M. Specovius-Neugebauer Asymptotics of Solutions to the Navier-Stokes system with nonzero flux in a layer-like domain submitted
  • J. Frehse, M. Specovius-Neugebauer: Morrey estimates and Hölder Continuity for Solutions to Parabolic Equations with Entropy Inequalities(to appear in " Journal für die Reine und Angewandte Mathematik ")
  • J. Frehse, M. Specovius-Neugebauer: Re-normalized estimates for solutions to the Navier-Stokes equation, Functiones et Approximatio, 40, No. 1, 11-31 (2009)
  • M. Specovius-Neugebauer, M. Steigemann: Eigenfunctions of the 2-dimensional anisotropic elasticity operator and algebraic equivalent materials, ZAMM 88, No. 2, 100 – 115 (2008)
  • S.A. Nazarov, M. Specovius-Neugebauer: Artificial Boundary Conditions for the Stokes and Navier-Stokes Equations in Domains that are Layer-like at Infinity, ZAA, 27 , 125 -155 (2008)
  • S.A. Nazarov, M. Specovius-Neugebauer: A crack on the interface of piezo-electric bodies, Zapiski Nauchnykh Seminarov POMI, Vol. 362, 2008, pp. 241–271, Übersetzung in J. Math. Sci.
  • S.A. Nazarov, M. Specovius-Neugebauer: Optimal convergence results for the Brezzi-Pitkäranta approximation of the Stokes problem: Exterior domains, Banach Center Publications, 81, 297-320 (2008)
  • S.A. Nazarov, A. Sequeira, M. Specovius-Neugebauer, J. Videman: Artificial boundary conditions for viscoelastic flows, Math. Meth. Appl. Sci. 31, 937–958 (2008)
  • S.A. Nazarov, M. Specovius-Neugebauer: Optimal estimates for the pressure stabilization method: the nonlinear problem.WSEAS Trans. Math. 5 (2006), no. 3, 322--328.
  • S.A. Nazarov, M. Specovius-Neugebauer: Use of the energy criterion of fracture to determine the shape of a slightly curved crack, Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5,. 119–130 (2006)
  • Stephan Blazy, S. A. Nazarov, M. Specovius-Neugebauer: Artificial boundary conditions of pressure type for viscous flows in a system of pipes, J. Math. Fluid Mech. 9 (2007), no. 1, 1--33.
  • S. Langer, S.A. Nazarov , M. Specovius-Neugebauer: Artificial boundary conditions on polyhedral truncation surfaces for three-dimensional elasticity systems, C. R. Mécanique 332, 591-596 (2004)
  • S.A. Nazarov, M. Specovius-Neugebauer: Optimal results for the Brezzi-Pitkäranta approximation of viscous flow problems. Differential and Integral equations 17, 1359-1394 (2004)
  • S. A. Nazarov, M. Specovius-Neugebauer: Artificial boundary conditions for Petrovsky systems of second order in exterior domains and in other domains of conical type,Math. Meth. Appl. Sci. 27, 1507-1544 (2004)
  • S. A. Nazarov, M. Specovius-Neugebauer, J. Videman: Nonlinear Artificial Boundary Conditions for the Navier-Stokes Equations in an Aperture Domain Math. Nach. 265, 24-67 (2004)
  • S.A. Nazarov, M. Specovius-Neugebauer: The pressure stabilization method for steady viscous flows in a system of pipes. Zap. Nauchn. Semin. POMI 306, (2003)
  • S.A. Nazarov, M. Specovius-Neugebauer: Artificial Boundary Conditions Providing Superpolynomial Error Estimates for the Neumann Problem in a Layer-Like Domain,Comp. Math. and Math. Physics 43, No. 10, 1418-1429 (2003)
  • S. A. Nazarov, M. Specovius-Neugebauer: Nonlinear artificial boundary conditions with point-wise error estimates for the exterior three dimensional Navier-Stokes problem Math. Nach. 252, 86-105 (2003)
  • S. A. Nazarov, M. Specovius-Neugebauer: Artificial boundary conditions for elliptic systems in domains with conical outlets to infinity Dokl. Ross. Akad. Nauk., 377, No 3, 1-4 (2001) (in Russisch)
  • S. A. Nazarov, M. Specovius-Neugebauer: Artificial boundary conditions for the exterior spatial Navier-Stokes problem. C. R. Acad. SCi Paris, 328, Serie II b, 863-867 (2000)
  • S. A. Nazarov, M. Specovius-Neugebauer, G. Thäter: Quiet flows for Stokes and Navier-Stokes problems in domains with cylindrical outlets to infinity. Kyosho Math J. 53, 369-394 (1999)
  • S. A. Nazarov, M. Specovius-Neugebauer, G. Thäter:Full steady Stokes system in domains with cylindrical outlets. Math. Ann. 314, 729-762 (1999)
  • M. Specovius-Neugebauer: Approximation of the Stokes Dirichlet problem in domains with cylindrical outlets. SIAM J. Math. An. 30, 645-677 (1999)
  • S. A. Nazarov, M. Specovius-Neugebauer: On the errors due to approximation of unbounded elastic bodies by bounded ones.: J. Appl. Math. Mech. (PMM) 62, 605-616 (1998)
  • M. Specovius-Neugebauer: Artificial boundary conditions for two-dimensional exterior Stokes problems, in: H. Amann et al.: Navier-Stokes equations and related nonlinear problems, Proceedings of the sixth international conference, Utrecht 1998, pp. 349-370.
  • H. Sohr, M. Specovius-Neugebauer: The Stokes Problem for Exterior Domains in Homogeneous Sobolev Spaces. in: J.G. Heywood et al.: The Navier-Stokes Equations, Theory and Numerical Methods, Series on Advances in Mathematics for applied Sciences, Vol 47, Singapur 1998, pp. 185-205.
  • S. A. Nazarov, M. Specovius-Neugebauer: Selfadjoint extensions of the Neumann Laplacian in domains with cylindrical outlets. Commun. Math. Phys. 185, 689-707 (1997)
  • S. A. Nazarov, M. Specovius-Neugebauer: Approximation of Exterior Boundary Value Problems for the Stokes System.Asymptotic Analysis 14, 223-255 (1997)
  • S. A. Nazarov, M. Specovius-Neugebauer: Approximation of unbounded domains by bounded ones. Boundary value problems for the Lamé-Operator. Algebra i Analiz 8, No. 5 (1996), Engl. Übers. in St.-Petersburg Math. J. 8, No. 5 (1997)
  • S. A. Nazarov, M. Specovius-Neugebauer: Approximation of unbounded domains by bounded ones. Boundary value problems for the Lamé-Operator. Algebra i Analiz 8, No. 5 (1996), Engl. Übers. in St.-Petersburg Math. J. 8, No. 5 (1997)
  • S. A. Nazarov, M. Specovius-Neugebauer: Approximation of exterior problems. Optimal conditions for the Laplacian. Analysis 16, 305-324 (1996).
  • M. Specovius-Neugebauer: The two-dimensional exterior Stokes problem, existence, regularity and decay properties. Math. Methods Appl. Sci. 19, No. 7, 507-528 (1996)
  • R. Pulidori, M. Specovius-Neugebauer: Generalized solutions for the Stokes equation in exterior domains in: Sequeira, A. (ed.): Navier-Stokes equations and related nonlinear problems. Proceedings of the 3rd international conference, held May 21-27, 1994 in Funchal, Madeira, Portugal. Funchal: Plenum Press, 53-62 (1995)
  • M. Specovius-Neugebauer: The weak Neumann problem and the Helmholtz decomposition of two-dimensional vector fields in weighted Lr-spaces in: Sequeira, A. (ed.): Navier-Stokes equations and related nonlinear problems. loc. cit., pp. 105-116.
  • M. Specovius-Neugebauer: Weak solutions of the Stokes problem in weighted Sobolev spaces. Acta Appl. Math. 37, No. 1-2, 195-203 (1994).
  • M. Specovius-Neugebauer: The Helmholtz decomposition of weighted Lr-Spaces. Commun. Part. Diff. Equations 15, No. 3, 273-288 (1990).K. I. Pileckas, M. Specovius-Neugebauer: Solvability of a free noncompact boundary problem for a stationary Navier-Stokes system. II., Litov. Mat. Sb. 29, No. 4, 773-784 (1989).
  • K. I. Pileckas, M. Specovius-Neugebauer: Solvability of a free noncompact boundary problem for a stationary Navier-Stokes system. I., Litov. Mat. Sb. 29, No. 3, 532-547 (1989), Engl. Übers. in Lith. Math. J. 29, No. 3, 281-292 (1989)
  • M. Specovius-Neugebauer: Exterior Stokes problems and decay at infinity. Math.Methods Appl. Sci. 8, 351-367 (1986).