13
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[unmarkierte Version] | [unmarkierte Version] |
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
Eine quadratische Funktion (auch ganzrationale Funktion 2. Grades oder Polynom 2. Grades) ist eine Funktion, die als Funktionsterm ein Polynom vom Grad 2 besitzt, also von der Form f(x)= ax²+bx+c (mit a ≠ 0) ist. Dies ist die zweite elementare Funktion, welche die SchülerInnen in der Schule kennenlernen. Der Graph ist eine Parabel mit dem [[Scheitelpunkt]] S(-(b/2a);(4ac-b²)/4a). Für a= 0 ergibt sich eine [[lineare Funktion]]. | Eine quadratische Funktion (auch ganzrationale Funktion 2. Grades oder Polynom 2. Grades) ist eine Funktion, die als Funktionsterm ein Polynom vom Grad 2 besitzt, also von der Form <math> f(x)= ax²+bx+c </math>(mit <math> a ≠ 0 </math>) ist. Dies ist die zweite elementare Funktion, welche die SchülerInnen in der Schule kennenlernen. Der Graph ist eine Parabel mit dem [[Scheitelpunkt]] <math> S(-(b/2a);(4ac-b²)/4a) </math>. Für <math> a= 0 </math> ergibt sich eine [[lineare Funktion]]. | ||
== Einfluss der Parameter a, b und c == | == Einfluss der Parameter <math> a </math>, <math> b </math> und <math> c </math> == | ||
===Parameter a=== | ===Parameter <math> a </math>=== | ||
Wenn die Vorfaktoren b=0 und c=0 sind, reduziert sich die quadratische Funktion auf die Form ax², so dass der Graph der Funktion eine Normalparabel mit dem Vorfaktor a beschreibt, unter anderem nach unten bzw. oben geöffnet als auch gestaucht bzw. gestreckt sein kann.[[Kategorie:Analysis]] | Wenn die Vorfaktoren <math> b=0 </math> und <math> c=0 </math> sind, reduziert sich die quadratische Funktion auf die Form <math> ax² </math>, so dass der Graph der Funktion eine Normalparabel mit dem Vorfaktor <math> a </math> beschreibt, unter anderem nach unten bzw. oben geöffnet als auch gestaucht bzw. gestreckt sein kann.[[Kategorie:Analysis]] | ||
===Parameter b=== | ===Parameter <math> b </math>=== | ||
Bei einer Veränderung des Vorfaktors b kommt es sowohl zu einer Verschiebung des Graphen in x-Richtung als auch in y-Richtung. | Bei einer Veränderung des Vorfaktors <math> b </math> kommt es sowohl zu einer Verschiebung des Graphen in x-Richtung als auch in y-Richtung. | ||
===Parameter c=== | ===Parameter <math> c </math>=== | ||
Die Veränderung des Vorfaktors c bedingt eine Verschiebung des Graphen in y-Richtung. | Die Veränderung des Vorfaktors <math> c </math> bedingt eine Verschiebung des Graphen in y-Richtung. | ||
==Scheitelpunkt / Scheitelpunktform== | ==Scheitelpunkt / Scheitelpunktform== | ||
Der [[Scheitelpunkt]] trifft eine Aussage über die Lage einer [[Parabel]] und ist identisch mit dem [[absoluten Minimum]] (für a>0) bzw. [[absoluten Maximum]] (für a<0). Falls die Lage der Parabel bekannt ist, kann diese, sofern sie eine Normalparabel ist, mit Hilfe einer Parabelschablone in ein entsprechendes [[Koordinatensystem]] eingezeichnet werden. | Der [[Scheitelpunkt]] trifft eine Aussage über die Lage einer [[Parabel]] und ist identisch mit dem [[absoluten Minimum]] (für <math> a>0 </math>) bzw. [[absoluten Maximum]] (für <math> a<0 </math>). Falls die Lage der Parabel bekannt ist, kann diese, sofern sie eine Normalparabel ist, mit Hilfe einer Parabelschablone in ein entsprechendes [[Koordinatensystem]] eingezeichnet werden. | ||
Die Scheitelpunktform einer quadratischen Funktion ist insofern eine besondere Form, als das der Scheitelpunkt der Funktion direkt aus der Gleichung abgelesen werden kann:für f(x)=a(x+d)²+e lautet der Scheitelpunkt S(-d;e). | Die Scheitelpunktform einer quadratischen Funktion ist insofern eine besondere Form, als das der Scheitelpunkt der Funktion direkt aus der Gleichung abgelesen werden kann:für <math> f(x)=a(x+d)²+e </math> lautet der Scheitelpunkt <math> S(-d;e) </math>. | ||
Da im Mathematikunterricht zumeist die quadratischen Funktionsgleichung in der Form eines Polynoms zweiten Grades dargestellt wird, lernen die SchülerInnen das Überführen der Funktionsgleichung von der Polynomform in die Scheitelpunktform mittels der [[quadratischen Ergänzung]]. | Da im Mathematikunterricht zumeist die quadratischen Funktionsgleichung in der Form eines Polynoms zweiten Grades dargestellt wird, lernen die SchülerInnen das Überführen der Funktionsgleichung von der Polynomform in die Scheitelpunktform mittels der [[quadratischen Ergänzung]]. |
Bearbeitungen