Simulationen im Stochastikunterricht: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
(Die Seite wurde neu angelegt: „„Unter Simulation versteht man in der Wissenschaft die Nachbildung eines realen Objektes oder Vorgangs als Modell und die Nutzung dieses Modells an Stelle de…“)
 
Keine Bearbeitungszusammenfassung
Zeile 8: Zeile 8:
[[Carmen Maxara|Maxara]] hebt die Modellbildung als einen unerlässlichen Bestandteil des Simulierens hervor: <br />
[[Carmen Maxara|Maxara]] hebt die Modellbildung als einen unerlässlichen Bestandteil des Simulierens hervor: <br />
„Wenn man die Realsituation durch ein passendes Modell ersetzt, anhand dessen Experimente durchgeführt werden, so spricht man von Simulation.“ <br />
„Wenn man die Realsituation durch ein passendes Modell ersetzt, anhand dessen Experimente durchgeführt werden, so spricht man von Simulation.“ <br />
„Erst die Modellierung einer stochastischen Situation macht das Durchführen eines Zufallsexperiments zu einer Simulation“.<sup>4</sup>
„Erst die Modellierung einer stochastischen Situation macht das Durchführen eines Zufallsexperiments zu einer Simulation“.<sup>4</sup> <br />
 
[[Rolf Biehler|Biehler]] nennt drei Situationen, in denen stochastische Simulationen sinnvoll eingesetzt werden können: <sup>4</sup>
* um Theorien zu überprüfen (Theorieprüfung),
* um Vermutungen für und Hinweise auf theoretische Ergebnisse zu gewinnen (Heuristische Funktion)
* um Wahrscheinlichkeiten rein statistisch zu bestimmen (Schätzfunktion)  <br />
Insbesondere die Verwendung von Statistiksoftware wie Exel, SPSS und FATHOM am Computer ermöglicht einen vielversprechenden Einsatz von Simulationen. Es können auf vielfältige Arten Zufallszahlen erzeugt werden, typische Zufallsgeräte wie Würfel, Münze sowie das Ziehen aus der Urne mit und ohne Zurücklegen der Urne mit und ohne Zurücklegen lassen sich nachbilden und Zufallsexperimente können auf einfache und schnelle Weise 1000fach oder 10000fach wiederholt werden. Vorteilhaft ist zudem die die einfache grafische Darstellung der entstehenden Häufigkeitsverteilungen.<sup>5</sup>
 
==Ziele beim Einsatz von Simulationen im Stochastikunterricht==
[[Rolf Biehler|Biehler]] differenziert zwei Klassen von didaktischen Anwendungen der stochastischen Simulation: <br />
Zum einen kann die Simulation als Werkzeug zur Lösung stochastischer Problemstellungen verwendet werden. Die Simulation dient hier als Ersatz oder Kontrolle für theoretische Berechnungen. Zum zweiten ermöglicht die Verwendung von Computersimulationen einen experimentellen Umgang mit stochastischen Problemstellungen. Hierüber werden Schülerinnen und Schüler vertraut mit stochastischen Situationen und man kann das intuitive Verständnis der Schülerinnen und Schüler fördern. Weiter kann man über den experimentellen Zugang zu stochastischen Problemstellungen zentrale stochastische Begriffe wie z. B. den Erwartungswert, die Varianz oder auch den Verteilungsbegriff vorbereiten. <sup>2</sup> <br />
[[Thorsten Meyfarth|Meyfarth]] betont zudem das durch den Einsatz im Simulationen im Stochastikunterricht ein zweiter Zugang zum Wahrscheinlichkeitsbegriff möglich wird. Über relative Häufigkeiten in vielfach wiederholten Simulationsdurchgängen können Wahrscheinlichkeiten bestimmt und so der frequentistische Zugang gewählt werden.<sup>2</sup> Hier zahlt sich insbesondere der Computereinsatz für das häufige Wiederholen von Zufallsexperimenten aus. <br />
 
[[Carmen Maxara|Maxara]] und [[Rolf Biehler|Biehler]] differenzieren die erste Klasse noch nach der Art des Werkzeugeinsatzes:<sup>4</sup>
* '''Simulation zur Repräsentation von Zufallsexperimenten''': die Möglichkeit, Erfahrungen mit zufallsabhängigen Situationen zu sammeln und somit Grundlagen für „stochastisches Denken“ zu schaffen; Simulationen  als Hilfe zum Aufbau eines konzeptuellen Verständnis stochastischer Ideen (Fokus mehr auf die eigentlichen Inhalte als auf formale Aspekte) 
* '''Simulation im Wechselspiel mit analytischen Methoden''': Analytisch gewonnene Ergebnisse können durch Simulation überprüft werden, durch Simulation gewonnene Ergebnisse geben Anhaltspunkte für analytische Ansätze; Modellierung als ein verbindendes Element zwischen Simulation und theoretischen Methoden. Trauerstein vertritt die Hypothese, dass bei der Simulation die Modellbildung deutlicher und expliziter gemacht wird als bei einer theoretischen Lösung, da man bei der Simulation sich über Vereinfachungen und Annahmen Gedanken machen muss.
* '''Simulation als Werkzeug, als Methode sui generi''': Theoretisch anspruchsvolle, d. h. für den jeweiligen Lernstand mathematisch schwierig oder gar nicht zu lösende, Aufgaben können dennoch durch Simulation gelöst werden, da die Lösung mathematisch elementarer als eine analytische Lösung ist 
 
 
 
 
 


==Literatur==
==Literatur==
<sup>1</sup> Horton, Graham (2003): Simulation: Das virtuelle Labor. In: Magdeburger Wissenschaftsjournal 1-2: 45-52., S. 45 <br />
<sup>1</sup> Horton, Graham (2003): Simulation: Das virtuelle Labor. In: Magdeburger Wissenschaftsjournal 1-2: 45-52., S. 45 <br />
<sup>2</sup> Meyfarth, Thorsten (2008): [[Die Konzeption, Durchführung  und Analyse eines simulationsintensiven Einstiegs in das Kurshalbjahr  Stochastik der gymnasialen Oberstufe – Eine explorative  Entwicklungsstudie]]. Dissertation, Universität Kassel <br />
<sup>2</sup> [[Thorsten Meyfarth|Meyfarth, Thorsten]] (2008): [[Die Konzeption, Durchführung  und Analyse eines simulationsintensiven Einstiegs in das Kurshalbjahr  Stochastik der gymnasialen Oberstufe – Eine explorative  Entwicklungsstudie]]. Dissertation, Universität Kassel <br />
<sup>3</sup>  Tietze u.a. (2002). Didaktik der Stochastik, Band 3. Mathematikunterricht
<sup>3</sup>  Tietze u.a. (2002). Didaktik der Stochastik, Band 3. Mathematikunterricht
in der Sekundarstufe II. Tietze, Uwe-Peter; Klika, Manfred; Wolper, Hans (Hrsg.) Braunschweig, Vieweg, S. 129. <br />
in der Sekundarstufe II. Tietze, Uwe-Peter; Klika, Manfred; Wolper, Hans (Hrsg.) Braunschweig, Vieweg, S. 129. <br />
<sup>4</sup> Maxara, Carmen (2008): [[Stochastische Simulation von Zufallsexperimenten mit Fathom – eine theoretische Werkzeuganalyse und explorative Fallstudie]]. Dissertation, Universität Kassel
<sup>4</sup> [[Carmen Maxara|Maxara, Carmen]] (2008): [[Stochastische Simulation von Zufallsexperimenten mit Fathom – eine theoretische Werkzeuganalyse und explorative Fallstudie]]. Dissertation, Universität Kassel<br />
<sup>5</sup> Biehler, R. und C. Maxara (2007): Integration von stochastischer Simulation in den Stochastikunterricht mit Hilfe von Werkzeugsoftware. In: Der Mathematikunterricht 53 (3): 45-62. <br />
 
 




[[Kategorie:Enzyklopädie]]
[[Kategorie:Enzyklopädie]]