Lösungsmenge: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[unmarkierte Version][unmarkierte Version]
KKeine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
Eine „Lösungsmenge“ ist die „Menge aller Lösungen“ eines gegebenen mathematischen Problems unter gegebenen Bedingungen (wie etwa Anfangs- und Randbedingungen). Solche Bedingungen lassen sich mit Hilfe von [[Aussageformen]] beschreiben, so etwa mit einem System von Gleichungen und Ungleichungen. Im Mathematikunterricht geht es dann i. d. R. um Lösungsmengen von Gleichungen oder Ungleichungen.<br />
Eine „Lösungsmenge“ ist die „Menge aller Lösungen“ eines gegebenen mathematischen Problems unter gegebenen Bedingungen (wie etwa Anfangs- und Randbedingungen). Solche Bedingungen lassen sich mit Hilfe von [[Aussageformen]] beschreiben, so etwa mit einem System von Gleichungen und Ungleichungen. Im Mathematikunterricht geht es i. d. R. um Lösungsmengen von Gleichungen oder Ungleichungen.<br />


== Mathematischer Sachverhalt ==
== Mathematischer Sachverhalt ==
Es sei <math>A(x)</math> eine [[Aussageform]] und <math>M</math> eine Menge zulässiger bzw. sinnvoller Einsetzungen für <math>x</math> in <math>A(x)</math>, sodass bei Einsetzung eines konkreten Wertes für <math>x</math> in <math>A(x)</math> entweder eine wahre oder eine falsche Aussage entsteht.<br />  
Es sei <math>A(x)</math> eine [[Aussageform]] und <math>M</math> eine Menge zulässiger bzw. sinnvoller Einsetzungen für <math>x</math> in <math>A(x)</math>, sodass bei Einsetzung eines konkreten Wertes für <math>x</math> in <math>A(x)</math> entweder eine wahre oder eine falsche Aussage entsteht.<br />  


Ist nun  <math>\varnothing\ne G\subseteq M</math>  und  <math>L:=\{x \in G|A(x)\}</math> (d. h.: <math>L</math> ist die Menge aller derjenigen Elemente aus <math>G</math>, die <math>A(x)</math>  in eine wahre Aussage überführen, die also <math>A(x)</math> „lösen“),  so heißt <math>L</math> „Lösungsmenge“ von <math>A(x)</math>  bezüglich der gewählten „Grundmenge“ <math>G</math>. Diese Lösungsmenge könnte man auch genauer mit <math>L_{A(x),G}</math>  oder – wenn keine Missverständnisse entstehen – kurz mit <math>L_{G}</math> bezeichnen, um damit deutlich zu machen, dass sie nicht nur von der Aussageform <math>A(x)</math> abhängig ist, sondern insbesondere auch von der jeweiligen Grundmenge <math>G</math>. Diese Grundmenge kann z. B. eine Menge von Zahlen, von Zahlenpaaren, von Vektoren, von Funktionen, von geometrischen Objekten wie Punkten, Strecken, Figuren  usw. sein. So hat beispielsweise eine numerische Gleichung per se noch keine Lösungsmenge, sondern diese hängt wesentlich von der gewählten Grundmenge ab. <br />
Ist nun  <math>\varnothing\ne G\subseteq M</math>  und  <math>L:=\{x \in G|A(x)\}</math> (d. h.: <math>L</math> ist die Menge aller derjenigen Elemente aus <math>G</math>, die <math>A(x)</math>  in eine wahre Aussage überführen, die also <math>A(x)</math> „lösen“),  so heißt <math>L</math> „Lösungsmenge“ von <math>A(x)</math>  bezüglich der gewählten Grundmenge <math>G</math>. Diese Lösungsmenge könnte man auch genauer mit <math>L_{A(x),G}</math>  oder – wenn keine Missverständnisse entstehen – kurz mit <math>L_{G}</math> bezeichnen, um damit deutlich zu machen, dass sie nicht nur von der Aussageform <math>A(x)</math> abhängig ist, sondern insbesondere auch von der jeweiligen Grundmenge <math>G</math>. Diese Grundmenge kann z. B. eine Menge von Zahlen, von Zahlenpaaren, von Vektoren, von Funktionen oder von geometrischen Objekten wie Punkten, Strecken, Figuren  usw. sein. So hat beispielsweise eine numerische Gleichung per se noch keine Lösungsmenge, vielmehr hängt diese wesentlich von der gewählten (bzw. noch zu wählenden) Grundmenge ab. <br />
Sofern die Grundmenge <math>G</math> mehr als ein Elemente enthält (<math>|G| > 1</math>), können prinzipiell folgende Fälle auftreten:<br />
Sofern die Grundmenge <math>G</math> mehr als ein Element enthält (<math>|G| > 1</math>), können prinzipiell folgende Fälle auftreten:<br />
# <math>L=\varnothing</math>: Es gibt keine Lösung in <math>G</math>, die Aussageform ist in <math>G</math> ''unlösba''r.
# <math>L=\varnothing</math>: Es gibt keine Lösung in <math>G</math>, die Aussageform ist in <math>G</math> ''unlösba''r.
# <math>\varnothing\ne L\subset G</math>: Die Aussageform ist in <math>G</math> ''(teilweise) lösbar''.
# <math>\varnothing\ne L\subset G</math>: Die Aussageform ist in <math>G</math> ''(teilweise) lösbar''.
# <math>L=G</math>: Die Aussageform ist in <math>G</math> ''allgemeingültig''. (Sie ist natürlich auch in diesem Fall „lösbar“!)
# <math>L=G</math>: Die Aussageform ist in <math>G</math> ''allgemeingültig''. (Sie ist in diesem Fall natürlich erst recht auch „lösbar“!)


== Didaktische Aspekte==
== Didaktische Aspekte==
Es ist nicht sinnvoll, im Mathematikunterricht bei der Betrachtung von numerischen Gleichungen bereits dann von „Lösungsmengen“ zu sprechen, wenn noch nicht die Erfahrung gemacht worden ist, dass Gleichungen keine oder mehrere Lösungen haben können. Dieser Fall tritt zwar bei quadratischen Gleichungen auf, jedoch ist an dieser Stelle die Bezeichnung „Lösungsmenge“ noch nicht zwingend erforderlich, weil es hier ja nur genau eine Lösung, zwei Lösungen oder keine Lösung gibt. Diese Schwierigkeit ist jedoch vermeidbar, wenn man früh Ungleichungen betrachtet.<br />
Es ist nicht sinnvoll, im Mathematikunterricht bei der Betrachtung von numerischen Gleichungen bereits dann von „Lösungsmengen“ zu sprechen, wenn noch nicht die Erfahrung gemacht worden ist, dass Gleichungen keine oder viele Lösungen haben können. Dieser Fall tritt zwar bei quadratischen Gleichungen auf, jedoch ist an dieser Stelle die Bezeichnung „Lösungsmenge“ noch nicht zwingend erforderlich, weil es hier ja nur genau eine Lösung, zwei Lösungen oder keine Lösung gibt. Die Bedeutung von Lösungsmengen zeigt sich z. B., wenn man Ungleichungen betrachtet.<br />


'''Beispiel''': Gesucht seien (die) Lösungen von <math>-2 < x\leq 3</math>. Hier wird die Abhängigkeit von der Grundmenge deutlich (auch wenn der Mengenbegriff nicht verfügbar sein sollte), was sich wie folgt notieren lässt: <br />   
'''Beispiel''': Gesucht seien (die) Lösungen von <math>-2 < x\leq 3</math>. Hier wird die Abhängigkeit von der Grundmenge deutlich (selbst wenn der Mengenbegriff nicht verfügbar sein sollte), was sich wie folgt notieren lässt: <br />   
* <math>L_{\mathbb{N}}=\{0,1,2,3\}</math>, <math>L_{\mathbb{Z}}=\{-1,0,1,2,3\}</math>, <math>L_{\mathbb{R}}= {]-2, 3]}</math> (halboffenes [https://de.wikipedia.org/wiki/Intervall_(Mathematik) Intervall]). <br />  
* <math>L_{\mathbb{N}}=\{0,1,2,3\}</math>, <math>L_{\mathbb{Z}}=\{-1,0,1,2,3\}</math>, <math>L_{\mathbb{R}}= {]-2, 3]}</math> (halboffenes [https://de.wikipedia.org/wiki/Intervall_(Mathematik) Intervall]). <br />  
Vollrath  empfiehlt zum Verständnis  von „Lösungsmenge“ die Betrachtung von Gleichungen, die Terme der  sog. Ganzteilfunktion enthalten („Integer-Funktion“, früher auch „Gauß-Klammer“ genannt, heute „ceil“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Abrundungsfunktion“], ferner zusätzlich „floor“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Aufrundungsfunktion“]).<ref>[Vollrath 1974, S. 92.]</ref> <br />
Vollrath  empfiehlt zum Verständnis  von „Lösungsmenge“ die Betrachtung von solchen Gleichungen, die Terme der  sog. Ganzteilfunktion enthalten („Integer-Funktion“, früher auch „Gauß-Klammer“ genannt, heute „ceil“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Abrundungsfunktion“], ferner zusätzlich „floor“ als [https://de.wikipedia.org/wiki/Abrundungsfunktion_und_Aufrundungsfunktion „Aufrundungsfunktion“]).<ref>[Vollrath 1974, S. 92.]</ref> <br />
Betrachtet man z. B. die Gleichung  <math>\lfloor x \rfloor = 2</math>, so ist <math>L= {[2, 3[}</math>
Betrachtet man z. B. die Gleichung  <math>\lfloor x \rfloor = 2</math>, so ist <math>L= {[2, 3[}</math>
<!--== Forschungsumfeld ==
<!--== Forschungsumfeld ==