Baustelle:Unendliche Objekte: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 11: Zeile 11:


=== Herleitung ===
=== Herleitung ===
Sei <math>P(t)=(xt,yt,1)<sup>T</sup></math> ein Vektor, der mittels der Dehomogenisierung[[Datei:Abbildung.png]] dem Punkt <math>(xt,yt)<sup>T</sup></math> der euklidischen Ebene zugeordnet werden kann. Da in der [[projektiven Geometrie]] skalare Vielfache miteinander identifiziert werden können, gilt <math>[P(t)]=[(xt,yt,1)<sup>T</sup>=(x,y,1/t)<sup>T</sup>]</math>. Der Grenzwert t→∞ entspricht hierbei - anschaulich gesprochen - folgender Situation: Der Punkt P(t) bewegt sich auf einer Geraden, deren Richtung durch x und y festgelegt ist, in der Ebene <math>z=1</math> immer weiter vom Ursprung weg.
Sei <math>P(t)=(x·t,y·t,1)<sup>T</sup></math> ein Vektor, der mittels der Dehomogenisierung[[Datei:Abbildung.png]] dem Punkt <math>(x·t,y·t)<sup>T</sup></math> der euklidischen Ebene zugeordnet werden kann. Da in der [[projektiven Geometrie]] skalare Vielfache miteinander identifiziert werden können, gilt <math>[P(t)]=[(xt,yt,1)<sup>T</sup>=(x,y,1/t)<sup>T</sup>]</math>. Der Grenzwert t→∞ entspricht hierbei - anschaulich gesprochen - folgender Situation: Der Punkt P(t) bewegt sich auf einer Geraden, deren Richtung durch x und y festgelegt ist, in der Ebene <math>z=1</math> immer weiter vom Ursprung weg.


In Darstellung der [[homogenen Koordinaten]] gilt[[Datei:Abbildung2.png]]. Also repräsentieren alle Vektor der Form <math>(x,y,0)<sup>T</sup></math> unendlich weit entfernte Punkte, die sogenannten Fernpunkte. Diese können mit Richtungen von Geraden der euklidischen Ebene identifiziert werden, wobei andersherum für jede Geradenrichtung einen Fernpunkt existiert.
In Darstellung der [[homogenen Koordinaten]] gilt[[Datei:Abbildung2.png]]. Also repräsentieren alle Vektor der Form <math>(x,y,0)<sup>T</sup></math> unendlich weit entfernte Punkte, die sogenannten Fernpunkte. Diese können mit Richtungen von Geraden der euklidischen Ebene identifiziert werden, wobei andersherum für jede Geradenrichtung einen Fernpunkt existiert.
8

Bearbeitungen