Baustelle:Relation: Unterschied zwischen den Versionen

Zeile 1: Zeile 1:
==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>==
==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>==
Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob <math>a</math> zu <math>b</math> „gehört“ bzw. ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls etwa <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden<br />
Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ (und damit als „[[Zuordnung]]“) verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob <math>a</math> zu <math>b</math> „gehört“ bzw. ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls etwa <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden<br />
Sofort ist ersichtlich, dass eine konkrete, etwa mit <math>R</math>  
Sofort ist ersichtlich, dass eine konkrete, etwa mit <math>R</math>  
bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare <math>(a,b)</math> aus der „Produktmenge“ <math>A\times B</math> gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge <math>A\times B</math> als ''„Relation zwischen <math>A</math> und <math>B</math>“'' – oder genauer: als ''„Relation von <math>A</math> nach <math>B</math>“'' – aufzufassen.<br />
bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare <math>(a,b)</math> aus der „Produktmenge“ <math>A\times B</math> gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge <math>A\times B</math> als ''„Relation zwischen <math>A</math> und <math>B</math>“'' – oder genauer: als ''„Relation von <math>A</math> nach <math>B</math>“'' – aufzufassen.<br />
Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen.
Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen.
==Definitionen==
==Definitionen==
===Grundlegende Definitionen===
===Grundlegende Definitionen===