Baustelle:Funktion: Unterschied zwischen den Versionen

K
Zeile 12: Zeile 12:


== Zur kulturhistorischen Begriffsgenese <small><small><ref>Vgl. hierzu die ausführliche Darstellung in [Hischer 2012, 130 ff.].</ref></small></small> ==
== Zur kulturhistorischen Begriffsgenese <small><small><ref>Vgl. hierzu die ausführliche Darstellung in [Hischer 2012, 130 ff.].</ref></small></small> ==
===Problematisierung===
Wo liegen die kulturhistorischen Wurzeln des mathematischen Funktionsbegriffs, und wie hat dieser sich Laufe der Geschichte der Mathematik entwickelt? Dieser Aspekt ist auch für die ontogenetische Entwicklung eines Begriffs im Individuum bedeutsam. <ref>Vgl. [Hischer 2012, Kapitel 1].</ref> Dabei geht es nicht darum, wann und unter welchen Bedingungen das Wort „Funktion” in der Mathematik auftauchte (was schnell auf [http://de.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz Leibniz] und [http://de.wikipedia.org/wiki/Jakob_I._Bernoulli Jakob I Bernoulli] führen würde, jedoch nicht weiterhilft). Vielmehr geht es um die mit dem Funktionsbegriff intendierten ''Inhalte'', denn es ist zwischen dem ''Begriffsnamen'' und dem ''Begriffsinhalt'' zu unterscheiden! Solche Inhalte ergeben sich anhand der oben angedeuteten<br /><br />
Wo liegen die kulturhistorischen Wurzeln des mathematischen Funktionsbegriffs, und wie hat dieser sich Laufe der Geschichte der Mathematik entwickelt? Dieser Aspekt ist auch für die ontogenetische Entwicklung eines Begriffs im Individuum bedeutsam. <ref>Vgl. [Hischer 2012, Kapitel 1].</ref> Dabei geht es nicht darum, wann und unter welchen Bedingungen das Wort „Funktion” in der Mathematik auftauchte (was schnell auf [http://de.wikipedia.org/wiki/Gottfried_Wilhelm_Leibniz Leibniz] und [http://de.wikipedia.org/wiki/Jakob_I._Bernoulli Jakob I Bernoulli] führen würde, jedoch nicht weiterhilft). Vielmehr geht es um die mit dem Funktionsbegriff intendierten ''Inhalte'', denn es ist zwischen dem ''Begriffsnamen'' und dem ''Begriffsinhalt'' zu unterscheiden! Solche Inhalte ergeben sich anhand der oben angedeuteten<br /><br />
'''Erscheinungsformen von Funktionen''' in Gestalt „vieler Gesichter“:
'''Erscheinungsformen von Funktionen''' in Gestalt „vieler Gesichter“:
Zeile 21: Zeile 22:
* ...?
* ...?
Legt man diese offen gehaltene Liste zugrunde, so begegnet uns der Funktionsbegriff erstmalig in einigen numerischen Tabellen bei den Babyloniern im 19. Jh. v. Chr., und es ergibt sich folgende grobe Zeittafel:<br />
Legt man diese offen gehaltene Liste zugrunde, so begegnet uns der Funktionsbegriff erstmalig in einigen numerischen Tabellen bei den Babyloniern im 19. Jh. v. Chr., und es ergibt sich folgende grobe Zeittafel:<br />
===Zeittafel===
* '''Stationen der kulturhistorischen Entwicklung des Funktionsbegriffs''' <ref>Aus [Hischer 2012, 131], dort im Anschluss ausführlich dargestellt.</ref>
* '''Stationen der kulturhistorischen Entwicklung des Funktionsbegriffs''' <ref>Aus [Hischer 2012, 131], dort im Anschluss ausführlich dargestellt.</ref>
{| class="wikitable"
{| class="wikitable"
Zeile 53: Zeile 55:
• ... viele Gesichter von Funktionen ???
• ... viele Gesichter von Funktionen ???
|}
|}
===Erörterung===
Während im 18. Jh. für '''Euler''' Funktionen noch entweder „analytische Ausdrücke“ (also „Terme“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns darüber hinaus Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) auch als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen von Fourier bei ihm und Dirichlet zu einem „termfreien“ Funktionsbegriff führte, bei dem die Funktionswerte keinem ''Bildungsgesetz'' mehr folgen (müssen). Der Grundlagenforscher und Mathematikhistoriker Ulrich Felgner schreibt hierzu: <ref>Felgner 2002, 624]</ref>  
Während im 18. Jh. für '''Euler''' Funktionen noch entweder „analytische Ausdrücke“ (also „Terme“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns darüber hinaus Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) auch als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen von Fourier bei ihm und Dirichlet zu einem „termfreien“ Funktionsbegriff führte, bei dem die Funktionswerte keinem ''Bildungsgesetz'' mehr folgen (müssen). Der Grundlagenforscher und Mathematikhistoriker Ulrich Felgner schreibt hierzu: <ref>Felgner 2002, 624]</ref>  
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.