Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Methodische Konzepte

Aus dev_madipedia
Version vom 25. Oktober 2016, 15:08 Uhr von Csguenther (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Zur Navigation springen Zur Suche springen

Allgemeines

Motivierung
Den größten methodischen Fehler, den Pädagogen durch die Theorieausbildung an der Uni machen, ist die Motivierung jeder einzelnen Themeneinheit oder sogar Lektion. Ein schwerwiegender Fehler bei der Vorbereitung auf das Leben, nur die Arbeiten auszuführen, die einen Sinn ergeben.
Nein, es kann von der 1. Klasse an nur eine immer wieder nahegebrachte (altersgemäße) Motivation geben, dass die Mathematik eine Querschnittswissenschaft ist, ohne die keine andere Wissenschaft bewertet werden kann.
Fast durchweg müssen Lehrer in der Berufspraxis kreativ dazulernen, weil viele Theoriekonzepte der Ausbildung nicht effektiv und praxiswirksam sind. Viele haben sicherlich auch erkannt, dass die Theorie der kleinen Schritte oder vom Einzelnen zum Komplexen bzw. Konkreten zum Allgemeinen nichts bringt, sondern nur, wenn das sachkomplexe Wesen gleichzeitig vermittelt wird.

Zahlenlehre - Grundstufe

Zählen lernen
Neben den Zahlenstäbchen und Hundertertafel ist der beschriftete Abakus das effektivste handlungsorientierte Mittel. Alle Kugeln erhalten die "1", an der oberen und unteren Querstrebe werden kumulativ die Einer-Ziffern 1-10 und am linken Rahmenteil die dekadischen Ziffern 1-10 (bis 100) angeschrieben. Sowohl die dekadische Wiederholung als auch der Zahlenaufbau mit der 1er-Reihe (Vorgänger, Nachfolger) als auch kleine Rechnungen (Summe, Differenz) werden schneller begriffen. Die Methode des gemeinsamen Sprechens sollte immanenter Bestandteil sein.

Zusammenzählen und Abziehen
Die Grundrechnung muss von Anfang an als Komplex behandelt werden. Nach den Übungen am Abakus muss zum Verständnis der Mathematik unbedingt vermittelt werden, dass die Zahl nicht nur Element und komplexe Einheit und bildhaft auch nicht ein (Koordinaten)Punkt auf der Zahlengeraden, sondern die Differenz zum Zählanfang 0 als gerichteter Zahlenpfeil (+-) sichtbar ist. Mit dem Aneinanderreihen der Zahlpfeile wird die Grundrechnung bildhaft (mit weiterem Sinn) besser verstanden und später auch die Vektorrechnung in der Rückbesinnung.
Auch die 2 gleichen Möglichkeiten des Rückwärtszählens und der Abstand/Differenz von Pfeilspitze zu Spitze kommt so besser zum Tragen.
Es sollte mit der Grafik auch gleich die Zahlengerade eingeführt werden, denn Grundschüler können verstehen, dass geborgtes Geld negativ belastet ist, weil man es zurück geben muss. Es ist Vorbereitung für das untereinander Zusammenzählen, den da muss ja auch "geborgt" werden.