Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Baustelle:Methodische Konzepte: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 3: Zeile 3:
<br />Den größten methodischen Fehler, den Pädagogen durch die Theorieausbildung an der Uni machen, ist die Motivierung jeder einzelnen Themeneinheit oder sogar Lektion! Ein schwerwiegender Fehler bei der Vorbereitung auf das Leben, nur die Arbeiten auszuführen, die einen Sinn ergeben.  
<br />Den größten methodischen Fehler, den Pädagogen durch die Theorieausbildung an der Uni machen, ist die Motivierung jeder einzelnen Themeneinheit oder sogar Lektion! Ein schwerwiegender Fehler bei der Vorbereitung auf das Leben, nur die Arbeiten auszuführen, die einen Sinn ergeben.  
<br />Nein, es kann von der 1. Klasse an nur eine immer wieder nahegebrachte (altersgemäße) Motivation geben, dass die Mathematik eine Querschnittswissenschaft ist, ohne die keine andere Wissenschaft bewertet werden kann und ohne die man nicht durchs Leben kommt!  
<br />Nein, es kann von der 1. Klasse an nur eine immer wieder nahegebrachte (altersgemäße) Motivation geben, dass die Mathematik eine Querschnittswissenschaft ist, ohne die keine andere Wissenschaft bewertet werden kann und ohne die man nicht durchs Leben kommt!  
<br />Fast durchweg müssen Lehrer in der Berufspraxis kreativ dazulernen, weil viele Theoriekonzepte der Ausbildung nicht effektiv und praxiswirksam sind! Viele haben sicherlich auch erkannt, dass die Theorie der kleinen Schritte oder vom Einzelnen zum Komplexen bzw. Konkreten zum Allgemeinen nichts bringt, sondern nur, wenn das sachkomplexe Wesen und die digitale Einheit (Ganzheit) einer Sache gleichzeitig vermittelt wird!  
<br />Fast durchweg müssen Lehrer in der Berufspraxis kreativ dazulernen, weil viele Theoriekonzepte der Ausbildung nicht effektiv und praxiswirksam sind! Viele haben sicherlich auch erkannt, dass die Theorie der kleinen Schritte oder vom Einzelnen zum Komplexen bzw. Konkreten zum Allgemeinen nichts bringt, sondern nur, wenn das sachkomplexe Wesen und die digitale Einheit (Ganzheit) einer Sache gleichzeitig vermittelt wird! Letzteres muss unbedingt als neue pädagogische Philosophie Eingang in die Uni-Ausbildung finden!


==Zahlenlehre - Grundstufe==
==Zahlenlehre - Grundstufe==
Zeile 22: Zeile 22:
# Regel: Nur Gleichartiges kann verrrechnet werden (Zahlen/Glieder)  
# Regel: Nur Gleichartiges kann verrrechnet werden (Zahlen/Glieder)  
# Regel: Verrechnung von der höheren zur niederen Rechenart, nur Klammer extra, sonst egal.(Rechenart)(Ersetzt überflüssige Assoziativ-, Distributiv- und Kommutativgesetz!)
# Regel: Verrechnung von der höheren zur niederen Rechenart, nur Klammer extra, sonst egal.(Rechenart)(Ersetzt überflüssige Assoziativ-, Distributiv- und Kommutativgesetz!)
# Regel: Gesetz der doppelten Negation (Kombination 1.+2.Regel)(Alle Umformungen, also ca. 80%)
# Regel: Gesetz der doppelten Negation (Kombination 1.+2.Regel)(Alle Umformungen, also ca. 80% Mathe)
 
Alle späteren "Regeln" reduzieren sich auf die Potenzregeln, die bei hintergründiger Erklärung aber auch nicht gelernt werden müssen!





Version vom 5. September 2011, 14:45 Uhr

Allgemeines

Motivierung
Den größten methodischen Fehler, den Pädagogen durch die Theorieausbildung an der Uni machen, ist die Motivierung jeder einzelnen Themeneinheit oder sogar Lektion! Ein schwerwiegender Fehler bei der Vorbereitung auf das Leben, nur die Arbeiten auszuführen, die einen Sinn ergeben.
Nein, es kann von der 1. Klasse an nur eine immer wieder nahegebrachte (altersgemäße) Motivation geben, dass die Mathematik eine Querschnittswissenschaft ist, ohne die keine andere Wissenschaft bewertet werden kann und ohne die man nicht durchs Leben kommt!
Fast durchweg müssen Lehrer in der Berufspraxis kreativ dazulernen, weil viele Theoriekonzepte der Ausbildung nicht effektiv und praxiswirksam sind! Viele haben sicherlich auch erkannt, dass die Theorie der kleinen Schritte oder vom Einzelnen zum Komplexen bzw. Konkreten zum Allgemeinen nichts bringt, sondern nur, wenn das sachkomplexe Wesen und die digitale Einheit (Ganzheit) einer Sache gleichzeitig vermittelt wird! Letzteres muss unbedingt als neue pädagogische Philosophie Eingang in die Uni-Ausbildung finden!

Zahlenlehre - Grundstufe

Zählen lernen
Neben den Zahlenstäbchen und Hunderter Tafel ist der beschriftete Abakus das effektivste handlungsorientierte Mittel. Alle Kugeln erhalten die "1", an der oberen und unteren Querstrebe werden kumulativ die Einer-Ziffern 1-10 und am linken Rahmenteil die dekadischen Ziffern 1-10(bis 100) angeschrieben. Sowohl die dekadische Wiederholung als auch der Zahlenaufbau mit der 1er-Reihe (Vorgänger, Nachfolger) als auch kleine Rechnungen (Summe + Differenz!) werden schneller begriffen! Die Methode des gemeinsamen Sprechens sollte immanenter Bestandteil sein!

Zur Grundrechnung

Zusammenzählen und Abziehen
Die Grundrechnung muss von Anfang an als Komplex behandelt werden! Nach den Übungen am Abakus muss zum Verständnis der Mathematik unbedingt vermittelt werden, dass die Zahl nicht nur Element und komplexe Einheit und bildhaft auch nicht ein (Koordinaten)Punkt auf der Zahlengeraden, sondern die Differenz zum Zählanfang 0 (Zahlenbild) als gerichteter Zahlenpfeil (+-)ist! Mit dem Aneinanderreihen der Zahlpfeile wird die Grundrechnung bildhaft (Verrechnungsbild) besser verstanden und später auch die Vektorrechnung in der Rückbesinnung!
Auch die 2 gleichen Möglichkeiten des Rückwärtszählens und der Abstand/Differenz von Pfeilspitze zu Spitze kommt so besser zum Tragen.
Es sollte mit der Grafik auch gleich die Zahlengerade eingeführt werden, denn Grundschüler können verstehen, dass geborgtes Geld negativ belastet ist, weil man es ja zurück geben muss! Es ist Vorbereitung für das untereinander Abziehen, denn da muss ja auch oben "geborgt" UND unten als Übertrag dazu geschrieben werden (Gesetz der doppelten Negation)!

3 grundlegende Rechenregeln
Alle Rechenregeln sind nur Ableitungen aus den 3 Grundrechenregeln, auf die ständig verwiesen werden sollte:

  1. Regel: Nur Gleichartiges kann verrrechnet werden (Zahlen/Glieder)
  2. Regel: Verrechnung von der höheren zur niederen Rechenart, nur Klammer extra, sonst egal.(Rechenart)(Ersetzt überflüssige Assoziativ-, Distributiv- und Kommutativgesetz!)
  3. Regel: Gesetz der doppelten Negation (Kombination 1.+2.Regel)(Alle Umformungen, also ca. 80% Mathe)

Alle späteren "Regeln" reduzieren sich auf die Potenzregeln, die bei hintergründiger Erklärung aber auch nicht gelernt werden müssen!


Aufspalten/Zerlegen von Zahlen
Genau wie beim einen einzigen Lösungsweg aller Aufgaben das Aufspalten von Gliedern für das Umformen der 1. Schritt ist, muss für das Kopfrechnen das Aufspalten einer Zahl geübt und die Ergänzungszahlen beherrscht werden! Nichts macht das Gehirn in der Auffassungsgabe schneller als das Kopfrechnen!

1. Rechen-Spezialfall: Multiplizieren und Teilen

Wie in der Grundrechnung im Leben nicht benötigte Begriffe wie Addition, Subtraktion, Summand, Minuend und Subtrahend, sollten auch im 1. Rechenspezialfall Divisor und Divident entfallen, sowie vereinfachende Begriffe wie Ausgangszahl(Zähler) und nur Teiler(Nenner) benannt werden!