Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Baustelle:Unendliche Objekte: Unterschied zwischen den Versionen

Aus dev_madipedia
Zur Navigation springen Zur Suche springen
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 11: Zeile 11:


=== Herleitung ===
=== Herleitung ===
Sei <math>P(t)=(xt,yt,1)<sup>T</sup></math> ein Vektor, der mittels der Dehomogenisierung[[Datei:Abbildung.png]] dem Punkt <math>(xt,yt)<sup>T</sup></math> der euklidischen Ebene zugeordnet werden kann. Da in der [[projektiven Geometrie]] skalare Vielfache miteinander identifiziert werden können, gilt <math>[P(t)]=[(xt,yt,1)<sup>T</sup>=(x,y,1/t)<sup>T</sup>]</math>. Der Grenzwert t→∞ entspricht hierbei - anschaulich gesprochen - folgender Situation: Der Punkt P(t) bewegt sich auf einer Geraden, deren Richtung durch x und y festgelegt ist, in der Ebene <math>z=1</math> immer weiter vom Ursprung weg.
Sei <math>P(t)=(x·t,y·t,1)<sup>T</sup></math> ein Vektor, der mittels der Dehomogenisierung[[Datei:Abbildung.png]] dem Punkt <math>(x·t,y·t)<sup>T</sup></math> der euklidischen Ebene zugeordnet werden kann. Da in der [[projektiven Geometrie]] skalare Vielfache miteinander identifiziert werden können, gilt <math>[P(t)]=[(xt,yt,1)<sup>T</sup>=(x,y,1/t)<sup>T</sup>]</math>. Der Grenzwert t→∞ entspricht hierbei - anschaulich gesprochen - folgender Situation: Der Punkt P(t) bewegt sich auf einer Geraden, deren Richtung durch x und y festgelegt ist, in der Ebene <math>z=1</math> immer weiter vom Ursprung weg.


In Darstellung der [[homogenen Koordinaten]] gilt[[Datei:Abbildung2.png]]. Also repräsentieren alle Vektor der Form <math>(x,y,0)<sup>T</sup></math> unendlich weit entfernte Punkte, die sogenannten Fernpunkte. Diese können mit Richtungen von Geraden der euklidischen Ebene identifiziert werden, wobei andersherum für jede Geradenrichtung einen Fernpunkt existiert.
In Darstellung der [[homogenen Koordinaten]] gilt[[Datei:Abbildung2.png]]. Also repräsentieren alle Vektor der Form <math>(x,y,0)<sup>T</sup></math> unendlich weit entfernte Punkte, die sogenannten Fernpunkte. Diese können mit Richtungen von Geraden der euklidischen Ebene identifiziert werden, wobei andersherum für jede Geradenrichtung einen Fernpunkt existiert.

Version vom 5. Februar 2015, 14:36 Uhr

Hinweise:

Bitte beachten Sie die Madipedia:Richtlinien bei der Erstellung Ihres Beitrags. Insbesondere handelt es sich bei Enzyklopädie-Einträgen um Sekundärliteratur mit entsprechenden Hinweisen auf Primärliteratur. Bitte entfernen Sie diesen Hinweis und die jeweiligen Erläuterungstexte zu den Überschriften nachdem Sie den Artikel geschrieben haben.


Hinweise:

Wir empfehlen, den Artikel zunächst als Baustelle anzulegen, damit er noch nicht mit der Suchfunktion gefunden werden kann. So haben Sie die Möglichkeit, ihren Artikel in Ruhe auf einen guten Standard zu bringen. Einen Artikel zum Begriff "Funktion" würden Sie unter "Baustelle:Funktion" anlegen. Wenn der Artikel fertig ist, dann können Sie ihn in den normalen Bereich verschieben. Weitere Informationen dazu finden Sie unter Hilfe:Enzyklopädie.


In der projektiven Geometrie werden homogene Koordinaten genutzt, um die euklidische Ebene ohne Nullpunkt in den zu integrieren. Hierbei spielen insbesondere die unendlichen Objekte Fernpunkte und Ferngeraden eine große Rolle. [1]

Fernpunkte

Fernpunkte sind Vektoren der Form , die nicht mit Punkten der euklidischen Ebene identifizierbar sind. Um dennoch eine Interpretation herleiten zu können, werden Äquivalenzklassen betrachtet.

Herleitung

Sei Fehler beim Parsen (SVG (MathML kann über ein Browser-Plugin aktiviert werden): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://en.wikipedia.org/api/rest_v1/“:): {\displaystyle P(t)=(x·t,y·t,1)<sup>T</sup>} ein Vektor, der mittels der DehomogenisierungAbbildung.png dem Punkt Fehler beim Parsen (Syntaxfehler): {\displaystyle (x·t,y·t)<sup>T</sup>} der euklidischen Ebene zugeordnet werden kann. Da in der projektiven Geometrie skalare Vielfache miteinander identifiziert werden können, gilt . Der Grenzwert t→∞ entspricht hierbei - anschaulich gesprochen - folgender Situation: Der Punkt P(t) bewegt sich auf einer Geraden, deren Richtung durch x und y festgelegt ist, in der Ebene immer weiter vom Ursprung weg.

In Darstellung der homogenen Koordinaten giltAbbildung2.png. Also repräsentieren alle Vektor der Form unendlich weit entfernte Punkte, die sogenannten Fernpunkte. Diese können mit Richtungen von Geraden der euklidischen Ebene identifiziert werden, wobei andersherum für jede Geradenrichtung einen Fernpunkt existiert.

Ferngeraden

Alle Fernpunkte liegen auf einer gemeinsamen Geraden: der Ferngeraden Fehler beim Parsen (Syntaxfehler): {\displaystyle l<sub>∞</sub>=(0,0,1)<sup>T</sup>} .

Erklärung

Auf jeder Geraden mit Fehler beim Parsen (Syntaxfehler): {\displaystyle (a,b)≠(0,0)} liegt ein Fernpunkt , denn es gilt für x=-b und y=a. Dieser Fernpunkt ist sogar der einzige Fernpunkt auf der Geraden g. Für die Ferngerade Fehler beim Parsen (Syntaxfehler): {\displaystyle l<sub>∞</sub>=(0,0,1)<sup>T</sup>} gilt für jeden Fernpunkt P': Fehler beim Parsen (Syntaxfehler): {\displaystyle <P',l<sub>∞</sub>>=0} , also liegen alle Fernpunkte auf der Ferngeraden Fehler beim Parsen (Syntaxfehler): {\displaystyle l<sub>∞</sub>=(0,0,1)<sup>T</sup>} .

  1. Literaturangaben werden über "ref" referenziert. Diese tauchen dann automatisch unter Literatur durch das "references"-tag auf. Weitere Informationen finden Sie unter Hilfe:Literaturangaben