64
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[unmarkierte Version] | [unmarkierte Version] |
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung |
||
Zeile 50: | Zeile 50: | ||
Definitionsbereich: <math> - ∞ < x < + ∞ </math> | Definitionsbereich: <math> - ∞ < x < + ∞ </math> | ||
Wertebereich: <math> | Wertebereich: <math> -\frac{p²}{4)+q ≤ y < + ∞ </math> | ||
Graph: zur Normalparabel kongruente Parabel mit dem Scheitelpunkt <math> S(- | Graph: zur Normalparabel kongruente Parabel mit dem Scheitelpunkt <math> S(-\frac{p}{2};(-\frac{p²}{4}+q) </math> | ||
==Nullstellen einer quadratischen Funktion== | ==Nullstellen einer quadratischen Funktion== | ||
Zeile 58: | Zeile 58: | ||
Für die quadratische Funktion <math> f(x)=ax²+bx+c </math> beschreibt die Gleichung <math> 0=ax²+bx+c </math> aus geometrischer Sicht die [[Nullstellen]] dieser Funktion. Die Nullstellen der quadratischen Funktion ergeben sich also aus der Lösung der dazugehörigen [[quadratischen Gleichung]]. Zur Vereinfachung der Nullstellenberechnung wird zudem die allgemeine Form <math> 0=ax²+bx+c </math> in die Normalform überführt: | Für die quadratische Funktion <math> f(x)=ax²+bx+c </math> beschreibt die Gleichung <math> 0=ax²+bx+c </math> aus geometrischer Sicht die [[Nullstellen]] dieser Funktion. Die Nullstellen der quadratischen Funktion ergeben sich also aus der Lösung der dazugehörigen [[quadratischen Gleichung]]. Zur Vereinfachung der Nullstellenberechnung wird zudem die allgemeine Form <math> 0=ax²+bx+c </math> in die Normalform überführt: | ||
<math> 0=x²+px+q </math> mit <math> p=b | <math> 0=x²+px+q </math> mit <math> p=\frac{b}{a} </math> und <math> q=\frac{c}{a} </math>. | ||
Die Lösungsformel, auch "[[p-q-Formel]]" genannt, lautet: | Die Lösungsformel, auch "[[p-q-Formel]]" genannt, lautet: | ||
x<small>1</small>=- | x<small>1</small>=-\frac{p}{2}+<math>\sqrt{(\frac{p}{2})²-q}</math> | ||
x<small>2</small>=- | x<small>2</small>=-\frac{p}{2-<math>\sqrt{(\frac{p}{2})²-q}</math>. | ||
Der Term unter dem Wurzelzeichen <math> D=(p | Der Term unter dem Wurzelzeichen <math> D=(\frac{p}{2})²-q </math> wird auch als [[Diskriminante]] bezeichnet. Diese gibt an, wie viel Lösungen die [[quadratische Gleichung]] und damit wie viel Nullstellen die quadratische Funktion hat. | ||
Die Funktion <math> f(x)=x²+px+q </math> hat genau zwei verschiedene und reelle Nullstellen, wenn <math> D>0 </math>, genau eine doppelte und reelle Nullstelle ([[Scheitelpunkt]]), wenn <math> D=0 </math>, und keine reelle Nullstelle, aber zwei verschiedene komplexe Nullstellen, wenn <math> D<0 </math> ist. | Die Funktion <math> f(x)=x²+px+q </math> hat genau zwei verschiedene und reelle Nullstellen, wenn <math> D>0 </math>, genau eine doppelte und reelle Nullstelle ([[Scheitelpunkt]]), wenn <math> D=0 </math>, und keine reelle Nullstelle, aber zwei verschiedene komplexe Nullstellen, wenn <math> D<0 </math> ist. |
Bearbeitungen