277
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 6: | Zeile 6: | ||
Mengendiagramme können Mengenbeziehungen verdeutlichen, sind jedoch im Allgemeinen nicht als mathematische Beweismittel geeignet. Als Beweismittel eignen sich nur solche Mengendiagramme, die alle möglichen Relationen der vertretenen Mengen darstellen; solche Diagramme werden Venn-Diagramme genannt. Der Nachteil von Venn-Diagrammen liegt darin, dass sie bei mehr als drei beteiligten Mengen rasch unübersichtlich werden, weil sie bei n Objekten 2n Möglichkeiten darstellen müssen. Venn selber konnte unter der Verwendung von Ellipsen bis zu vier, schließlich sogar fünf beteiligte Mengen darstellen. | Mengendiagramme können Mengenbeziehungen verdeutlichen, sind jedoch im Allgemeinen nicht als mathematische Beweismittel geeignet. Als Beweismittel eignen sich nur solche Mengendiagramme, die alle möglichen Relationen der vertretenen Mengen darstellen; solche Diagramme werden Venn-Diagramme genannt. Der Nachteil von Venn-Diagrammen liegt darin, dass sie bei mehr als drei beteiligten Mengen rasch unübersichtlich werden, weil sie bei n Objekten 2n Möglichkeiten darstellen müssen. Venn selber konnte unter der Verwendung von Ellipsen bis zu vier, schließlich sogar fünf beteiligte Mengen darstellen. | ||
< br/> | |||
'''Beispiel für den Einsatz von Mengendiagrammen bei Funktionen:''' | '''Beispiel für den Einsatz von Mengendiagrammen bei Funktionen:''' | ||
Bearbeitungen