277
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 4: | Zeile 4: | ||
'''Erläuterung der Mengendiagramme bei Funktionen:''' | '''Erläuterung der Mengendiagramme bei Funktionen:''' | ||
Mengendiagramme können Mengenbeziehungen verdeutlichen, sind jedoch im Allgemeinen nicht als mathematische Beweismittel geeignet. Als Beweismittel eignen sich nur solche Mengendiagramme, die alle möglichen Relationen der vertretenen Mengen darstellen; solche Diagramme werden Venn-Diagramme genannt. Der Nachteil von Venn-Diagrammen liegt darin, dass sie bei mehr als drei beteiligten Mengen rasch unübersichtlich werden, weil sie bei n Objekten 2n Möglichkeiten darstellen müssen. Venn selber konnte unter der Verwendung von Ellipsen bis zu vier, schließlich sogar fünf beteiligte Mengen darstellen. | Mengendiagramme können Mengenbeziehungen verdeutlichen, sind jedoch im Allgemeinen nicht als mathematische Beweismittel geeignet. Als Beweismittel eignen sich nur solche Mengendiagramme, die alle möglichen Relationen der vertretenen Mengen darstellen; solche Diagramme werden Venn-Diagramme genannt. Der Nachteil von Venn-Diagrammen liegt darin, dass sie bei mehr als drei beteiligten Mengen rasch unübersichtlich werden, weil sie bei n Objekten 2n Möglichkeiten darstellen müssen. Venn selber konnte unter der Verwendung von Ellipsen bis zu vier, schließlich sogar fünf beteiligte Mengen darstellen. | ||
Bearbeitungen