50
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[unmarkierte Version] | [unmarkierte Version] |
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 28: | Zeile 28: | ||
Mit I+II folgt ε + (0,9 Periode 9) = 1,000.000.000.999 '''>''' 1, was einen Widerspruch zur Annahme bildet. | Mit I+II folgt ε + (0,9 Periode 9) = 1,000.000.000.999 '''>''' 1, was einen Widerspruch zur Annahme bildet. | ||
Führt man nun diesen Beweis mit ε = 10^(-k) mit k aus den natürlichen Zahlen, erhält man einen Widerspruch zur Annahme für alle k aus den natürlichen Zahlen. Somit war die Annahme falsch. Da (0,9 Periode 9) > 1 ausgeschlossen werden kann, stellt man fest, dass (0.9 Periode 9) = 1 ist. Es gibt also kein Abstand ε zwischen 0,9 Periode 9) und 1, egal wie klein er gewählt wird. | Führt man nun diesen Beweis mit ε = 10^(-k) mit k aus den natürlichen Zahlen, erhält man einen Widerspruch zur Annahme für alle k aus den natürlichen Zahlen. Somit war die Annahme falsch. Da (0,9 Periode 9) > 1 ausgeschlossen werden kann, stellt man fest, dass (0.9 Periode 9) = 1 ist. Es gibt also kein Abstand ε zwischen 0,9 Periode 9) und 1, egal wie klein er gewählt wird. | ||
'''Beweise mit unendlichen geometrischen Reihen''' <ref> Analysis verständlich unterrichten </ref> | |||
Es ist möglich (0,9 Periode 9) als unendliche geometrische Reihe zu schreiben, also | |||
(0,9 Periode 9) = 0,99999... = 0,9 + 0,09 + 0,009 + ... = 0,9*1+ 0,9*(1/10) + 0,9*(1/100) + ... = Summe von n=0 bis ∞ mit 0,9*(1/10)^n. | |||
Aus der [[Analysis]] ist bekannt, dass für die Reihen Summe von n=0 bis ∞ mit a*q^n = a/(1-q) mit 0 < q < 1. Für unseren Fall gilt also mit a = 0,9 und q = 0,1: Summe von n=0 bis ∞ mit 0,9*(1/10)^n = 0,9 / (1 - 0,1) = 0,9 / 0,9 = 1. |
Bearbeitungen