1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[gesichtete Version] | [gesichtete Version] |
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
Primärliteratur zum Artikel: Hischer, Horst [2002]: Mathematikunterricht und Neue Medien. (3., durchgesehene, korrigierte und aktualisierte Auflage 2005). Hildesheim: Franzbecker, S. 246 ff. | Primärliteratur zum Artikel: Hischer, Horst [2002]: Mathematikunterricht und Neue Medien. (3., durchgesehene, korrigierte und aktualisierte Auflage 2005). Hildesheim: Franzbecker, S. 246 ff. | ||
==Übersicht== | ==Übersicht== | ||
Funktionenplotter sind zum Bereich der [[Neue Medien|Neuen Medien]] gehörende digitale Werkzeuge. Ein Funktionenplotter ist ein eigenständiges Programm oder ein Plugin, das auf dem Display eines Computers einen sog. '''Funktionsplot''' als ausschnittsweise Visualisierung des Funktionsgraphen einer reellen termdefinierbaren Funktion in einem Bildschirmfenster erzeugt. Ein Funktionenplotter kann nur dann aus einer termdefinierbaren Funktion einen Funktionsplot erzeugen, wenn ihr Funktionsterm mit Hilfe der auf diesem Funktionenplotter verfügbaren Standardfunktionen bildbar ist. Die Syntax zur Eingabe des Funktionsterms kann sich zwischen verschiedenen Funktionenplottern unterscheiden, es handelt sich jedoch in der Regel um für Computerprogramme übliche Befehle (z. | Funktionenplotter sind zum Bereich der [[Neue Medien|Neuen Medien]] gehörende digitale Werkzeuge. Ein Funktionenplotter ist ein eigenständiges Programm oder ein Plugin, das auf dem Display eines Computers einen sog. '''Funktionsplot''' als ausschnittsweise Visualisierung des Funktionsgraphen einer reellen termdefinierbaren Funktion in einem Bildschirmfenster erzeugt. Ein Funktionenplotter kann nur dann aus einer termdefinierbaren Funktion einen Funktionsplot erzeugen, wenn ihr Funktionsterm mit Hilfe der auf diesem Funktionenplotter verfügbaren Standardfunktionen bildbar ist. Die Syntax zur Eingabe des Funktionsterms kann sich zwischen verschiedenen Funktionenplottern unterscheiden, es handelt sich jedoch in der Regel um für Computerprogramme übliche Befehle (z. B. "sqrt" für Quadratwurzeln, "log" für den natürlichen Logarithmus und "exp" für Exponentialfunktionen). Häufig kann der Benutzer den angezeigten Wertebereich angeben und interaktiv verändern sowie die Achseneinteilung bestimmen. Viele Funktionenplotter erlauben die simultane Visualisierung mehrerer Funktionen in einem Koordinatensystem und entsprechend auch die Anzeige mehrerer Repräsentanten einer Funktionsschar. <br /> | ||
Funktionenplotter sind üblicher Bestandteil [[graphikfähige Taschenrechner|graphikfähiger Taschenrechner]] (GTR) und Taschencomputer (TC), und andererseits findet man sie als Beigabe zu vielen heute üblichen [[Computeralgebrasysteme|Computeralgebrasystemen]] (CAS), auch wenn sie nichts mit | Funktionenplotter sind üblicher Bestandteil [[graphikfähige Taschenrechner|graphikfähiger Taschenrechner]] (GTR) und Taschencomputer (TC), und andererseits findet man sie als Beigabe zu vielen heute üblichen [[Computeralgebrasysteme|Computeralgebrasystemen]] (CAS), auch wenn sie nichts mit „Computeralgebra zu tun haben. <br /> | ||
Es bleibt abzuwarten, ob Funktionenplotter im Mathematikunterricht zu einem ebenso selbstverständlichen Werkzeug werden, wie es im größten Teil des 20. Jahrhunderts noch Tafelwerke, Rechenschieber und Kurvenlineal waren. | Es bleibt abzuwarten, ob Funktionenplotter im Mathematikunterricht zu einem ebenso selbstverständlichen Werkzeug werden, wie es im größten Teil des 20. Jahrhunderts noch Tafelwerke, Rechenschieber und Kurvenlineal waren. So ermöglichen Funktionenplotter im Gegensatz zu diesen klassischen Werkzeugen und Hilfsmitteln eine schnellere und flexiblere Visualisierung reeller Funktionen, Funktionseigenschaften können interaktiv und anschaulich erarbeitet werden, und mögliche Einflüsse von Konstanten (bzw. Parametern) im Funktionsterm auf Form und Lage des Funktionsplots werden visuell erfahrbar, insbesondere, wenn deren „quasi stufenlose“ Veränderung mittels ''Schieberegler'' möglich ist. Andererseits muss diese „Schnelligkeit“ der Funktionenplotter nicht automatisch ein methodischer Vorteil sein – so bleibt zu untersuchen, ob eher „Entschleunigung“ zu einer stabileren Verankerung führt. Nachteile können ferner dann entstehen, wenn nicht über die Entstehung des Graphen aus diskreten Punkten nachgedacht und dies nicht direkt offensichtlich wird. Es darf zudem nicht uneingeschränkt auf die Exaktheit der Darstellungen vertraut werden. Man sollte sich darüber im Klaren sein, dass es sich beim Funktionsplot lediglich um eine Simulation des Funktionsgraphen handelt (Siehe [[#Funktionsplot als Simulation|Funktionsplot als Simulation]]) und wegen des sog. [[Aliasing|Aliasings]] sogar falsche Funktionsplots entstehen können. | ||
Nachteile können | |||
==Zur Geschichte<sup>1</sup>== | ==Zur Geschichte<sup>1</sup>== | ||
Schon die Bezeichnung weist auf eine lange Geschichte hin: Ein „'''plotter'''“ ist im Englischen ein „'''Planzeichner'''“, der einen „'''plot'''“ liefert, und das ist die ursprüngliche Anwendung und Zielsetzung: Auf großen ebenen Tischen bewegt sich parallel zu einer Seite eine Schiene und auf dieser orthogonal dazu ein Schlitten, der einen Tuschestift hält, so dass dieser Stift wie in einem kartesischen Koordinatensystem jeden Punkt eines darunter liegenden Zeichenblattes anfahren kann. Solche Plotter konnten durch ein Computerprogramm (Anfang der 1960er Jahre vor allem in ''ALGOL 60'' oder ''FORTRAN'' geschrieben) digital gesteuert werden, und der Zeichenstift konnte zusätzlich durch entsprechende Befehle angehoben und abgesenkt werden. Dadurch war es möglich, beliebige zweidimensionale Tuschezeichnungen inklusive Beschriftung z. B. in Normschrift „quasi-analog“ anzufertigen, was insbesondere für jegliche Baupläne sehr nützlich war. Und natürlich konnte man damit auch mathematische Kurven zeichnen lassen, was z. B. von Physikern genutzt wurde: „''Kurvenschreiber''“ waren u. a. in der Experimentalphysik als rein „analoge“ Systeme schon seit langem üblich und wichtig, so insbesondere als „''x-y-Schreiber''“ (auf rechteckig begrenztem Träger) oder als „''t-y-Schreiber''“ (auf „Endlospapier“ zur zeitabhängigen Datenerfassung, so z. B. in der Seismographie und früher in der Medizin beim EKG). Solche „Zeichentische“ gab es bereits seit den Anfängen der sich durchsetzenden Großcomputer um 1960 herum in großer Perfektion. Geradezu revolutionär war hier der von Konrad Zuse entwickelte 1961 vorgestellte, durch Planetengetriebe gesteuerte Zeichentisch „Graphomat Z64“, der bis zum Zeichenformat von 1,2 m x 1,4 m existierte und vierfarbige Zeichnungen (also „plots“) erstellen konnte.<sup>2</sup> <br /> | Schon die Bezeichnung weist auf eine lange Geschichte hin: Ein „'''plotter'''“ ist im Englischen ein „'''Planzeichner'''“, der einen „'''plot'''“ liefert, und das ist die ursprüngliche Anwendung und Zielsetzung: Auf großen ebenen Tischen bewegt sich parallel zu einer Seite eine Schiene und auf dieser orthogonal dazu ein Schlitten, der einen Tuschestift hält, so dass dieser Stift wie in einem kartesischen Koordinatensystem jeden Punkt eines darunter liegenden Zeichenblattes anfahren kann. Solche Plotter konnten durch ein Computerprogramm (Anfang der 1960er Jahre vor allem in ''ALGOL 60'' oder ''FORTRAN'' geschrieben) digital gesteuert werden, und der Zeichenstift konnte zusätzlich durch entsprechende Befehle angehoben und abgesenkt werden. Dadurch war es möglich, beliebige zweidimensionale Tuschezeichnungen inklusive Beschriftung z. B. in Normschrift „quasi-analog“ anzufertigen, was insbesondere für jegliche Baupläne sehr nützlich war. Und natürlich konnte man damit auch mathematische Kurven zeichnen lassen, was z. B. von Physikern genutzt wurde: „''Kurvenschreiber''“ waren u. a. in der Experimentalphysik als rein „analoge“ Systeme schon seit langem üblich und wichtig, so insbesondere als „''x-y-Schreiber''“ (auf rechteckig begrenztem Träger) oder als „''t-y-Schreiber''“ (auf „Endlospapier“ zur zeitabhängigen Datenerfassung, so z. B. in der Seismographie und früher in der Medizin beim EKG). Solche „Zeichentische“ gab es bereits seit den Anfängen der sich durchsetzenden Großcomputer um 1960 herum in großer Perfektion. Geradezu revolutionär war hier der von Konrad Zuse entwickelte 1961 vorgestellte, durch Planetengetriebe gesteuerte Zeichentisch „Graphomat Z64“, der bis zum Zeichenformat von 1,2 m x 1,4 m existierte und vierfarbige Zeichnungen (also „plots“) erstellen konnte.<sup>2</sup> <br /> | ||
Mit dem Aufkommen der ersten Arbeitsplatzcomputer Ende der 1970er Jahre wuchs der Wunsch der Anwender zur Erzeugung von Funktionsgraphen mit dem eigenen System. Zwar gab es damals auch kleinere Plotter – aber aufgrund der (völlig neuen!) Verfügbarkeit individueller (Nadel-)Drucker entstanden Anfang der 1980er Jahre dann die ersten sog. Funktionenplotter aus einer Kombination von noch sehr grober Bildschirmdarstellung und Druckern (zunächst Nadeldruckern, dann vor allem Tinten- und Laserdruckern). Die Bezeichnung „Plotter“ passte dafür eigentlich nicht mehr, weil diese „haushaltsüblichen“ Funktionenplotter keine „quasi-analogen“ Planzeichner waren. Die Ergebnisse waren einerseits für die normalen Anwender zunächst durchaus eindrucksvoll, denn sie kannten bis auf die eigenhändig skizzierten Funktionsgraphen meist noch nichts anderes, und andererseits waren die Ergebnisse schlicht miserabel – gemessen an dem Qualitätsstandard, der schon rund 20 Jahre vorher mit den „quasi-analogen“ Tuscheplottern möglich und üblich war. Während also ein Plotter ursprünglich ein analog oder digital gesteuertes materielles Gerät war, ist ein Funktionenplotter als ein Softwareprodukt nur ein virtuelles „Gerät“. | Mit dem Aufkommen der ersten Arbeitsplatzcomputer Ende der 1970er Jahre wuchs der Wunsch der Anwender zur Erzeugung von Funktionsgraphen mit dem eigenen System. Zwar gab es damals auch kleinere Plotter – aber aufgrund der (völlig neuen!) Verfügbarkeit individueller (Nadel-)Drucker entstanden Anfang der 1980er Jahre dann die ersten sog. Funktionenplotter aus einer Kombination von noch sehr grober Bildschirmdarstellung und Druckern (zunächst Nadeldruckern, dann vor allem Tinten- und Laserdruckern). Die Bezeichnung „Plotter“ passte dafür eigentlich nicht mehr, weil diese „haushaltsüblichen“ Funktionenplotter keine „quasi-analogen“ Planzeichner waren. Die Ergebnisse waren einerseits für die normalen Anwender zunächst durchaus eindrucksvoll, denn sie kannten bis auf die eigenhändig skizzierten Funktionsgraphen meist noch nichts anderes, und andererseits waren die Ergebnisse schlicht miserabel – gemessen an dem Qualitätsstandard, der schon rund 20 Jahre vorher mit den „quasi-analogen“ Tuscheplottern möglich und üblich war. Während also ein Plotter ursprünglich ein analog oder digital gesteuertes materielles Gerät war, ist ein Funktionenplotter als ein Softwareprodukt nur ein virtuelles „Gerät“. | ||
==Funktionsplot als Simulation== | ==Funktionsplot als Simulation== | ||
Der von einem Funktionenplotter erzeugte '''Funktionsplot''' ist auf den ersten Blick eine „''Visualisierung des Funktionsgraphen einer reellen termdefinierbaren Funktion in einem Bildschirmfenster''“ (s. o.). Bei näherer Betrachtung erweist er sich als ''Visualisierung einer rechnerintern erzeugten Wertetabelle'' einer gegebenen Funktion. Daraus folgt sogar, dass man bei reellen Funktionen zwischen „''Funktionsgraph''“ und „''Funktionsplot''“ unterscheiden muss, weil ein Funktionsplot nur als ''Simulation eines Funktionsgraphen einer reellen Funktion'' (kurz: Simulation einer reellen Funktion) anzusehen ist: <br /> | Der von einem Funktionenplotter erzeugte '''Funktionsplot''' ist auf den ersten Blick eine „''Visualisierung des Funktionsgraphen einer reellen termdefinierbaren Funktion in einem Bildschirmfenster''“ (s. o.). Bei näherer Betrachtung erweist er sich als ''Visualisierung einer rechnerintern erzeugten Wertetabelle'' einer gegebenen Funktion. Daraus folgt sogar, dass man bei reellen Funktionen zwischen „''Funktionsgraph''“ und „''Funktionsplot''“ unterscheiden muss, weil ein Funktionsplot nur als ''Simulation eines Funktionsgraphen einer reellen Funktion'' (kurz: Simulation einer reellen Funktion) anzusehen ist: <br /> |