Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Hans Niels Jahnke: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
keine Bearbeitungszusammenfassung
[gesichtete Version][unmarkierte Version]
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 81: Zeile 81:
* Der Zusammenhang von Verallgemeinerung und Gegenstandsbezug beim Beweisen - Am Beispiel der Geometrie diskutiert. In: W. Dörfler/R. Fischer (Hrsg.): Beweisen im Mathematikunterricht, Klagenfurt 1978, 225-242 (mit M. Otte)  
* Der Zusammenhang von Verallgemeinerung und Gegenstandsbezug beim Beweisen - Am Beispiel der Geometrie diskutiert. In: W. Dörfler/R. Fischer (Hrsg.): Beweisen im Mathematikunterricht, Klagenfurt 1978, 225-242 (mit M. Otte)  
* Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik - Beweisen als didaktisches Problem. Materialien und Studien des IDM, Bd.10, Bielefeld 1978
* Zum Verhältnis von Wissensentwicklung und Begründung in der Mathematik - Beweisen als didaktisches Problem. Materialien und Studien des IDM, Bd.10, Bielefeld 1978
===Publikationen zum Thema "Geschichte der Mathematik im Unterricht"===
* Geschichte der Mathematik. Vielfalt der Lebenswelten – Mut zu divergentem Denken. mathematik lehren 151, Dez. 2008, 4-11 (mit Karin Richter) 
* Students working on their own ideas: Bernoulli’s lectures on the differential calculus in grade 11, In: Fulvia Furinghetti, Hans Niels Jahnke, Jan A. van Maanen, (eds.), Studying Original Sources in Mathematics Education, Mathematisches Forschungsinstitut Oberwolfach Report 22/2006, 1313-1315 
* Historical Sources in the Mathematics Classroom: Ideas and Experiences. In: Hiroshi Fujita et al. (ed.), Proceedings of the Ninth International Congress on Mathematical Education, 2000 Makuhari Japan, Kluwer 2004, 136 – 138 
* Texte lesen und verstehen. Eine Erwiderung. Journal für Mathematik-Didaktik 24 (2003), H. 3/4, 252-260 (mit M. Glaubitz) 
* Texte von Studierenden zur Geschichte der Mathematik. In: L. Hefendehl-Hebeker & S. Hußmann (Hrsg.), Mathematikdidaktik zwischen Fachorientierung und Empirie. Festschrift für Norbert Knoche, Hildesheim: Franzbecker 2003, 105-116 
* Die Bestimmung des Umfangs der Erde als Thema einer mathematikhistorischen Unterrichtsreihe, Journal für Mathematik-Didaktik 24 (2003), H. 2, 71-95 (mit M. Glaubitz) 
* The use of original sources in the mathematics classroom. In: J. Fauvel & J. van Maanen, History in Mathematics Education, New ICMI Study Series vol. 6, Dordrecht/Boston/London: Kluwer 2000, 291 – 328 (unter Mitarbeit von A. Arcavi, E. Barbin, O. Bekken, F. Furinghetti, A. el Idrissi, C. da Silva, C. Weeks) 
* Authentische Erfahrungen mit Mathematik durch historische Quellen. In: C. Selter & G. Walther (Hrsg.) Mathematik als design science. Festschrift für E. Chr. Wittmann, Leipzig: Klett-Verlag, 1999, 95 – 104 (mit B. Habdank - Eichelsbacher) 
* Sonne, Mond und Erde oder: wie Aristarch von Samos mit Hilfe der Geometrie hinter die Erscheinungen sah, Mathematik lehren 91/1998, 20 - 22, 47 – 48 
* Historische Erfahrungen mit Mathematik, Mathematik lehren 91/1998, 4 – 8 
* Zur geometrischen Deutung der quadratischen Gleichung. In: K. P. Müller (Hrsg.), Beiträge zum Mathematikunterricht, Hildesheim: Franzbecker 1997, 255 – 258 
* Set and Measure as Examples of Complementarity. In: H. N. Jahnke, N.  Knoche & M. Otte (Hrsg.), History of Mathematics and Education: Ideas and Experiences. Göttingen: Vandenhoeck & Ruprecht 1996, 173 – 193 
* History of Mathematics and Education: Ideas and Experiences. Göttingen: Vandenhoeck & Ruprecht 1996. Hrsg. mit N. Knoche & M. Otte 
* Mathematikgeschichte für Lehrer - Gründe und Beispiele. Ma­thematische Semesterberichte 43/1 (1996), 21 – 46 
* Historische Reflexion im Unterricht. Das erste Lehrbuch der Differentialrech­nung (Bernoulli 1692) in einer elften Klasse. mathematica didactica 18 (1995) Heft 2, 30 58 
* Al-Khwarizmi und Cantor in der Lehrerbildung. In: Biehler, R.; Heymann, H. W. & Winkelmann, B. (Hrsg.): Mathematik allgemeinbildend unterrichten: Im­pulse für Lehrerbildung und Schule, Köln: Aulis 1995, 114 – 136 
* The Historical Dimension of Mathematical Understanding - Objectifying the Subjective. In: Proceedings of the Eighteenth International Conference for the Psychology of Mathematics Education, vol. I, Lisbon: University of Lisbon, 1994, 139 – 156 
* Mathematikgeschichte für Lehrer - aber wie? In: K. P. Müller (Hrsg.), Beiträge zum Mathematikunterricht,  Hildesheim: Franzbecker 1994, 159 – 162 
* Mathematik historisch verstehen, oder: Wie haben die alten Griechen qua­drati­sche Gleichungen gelöst? Mathematik lehren, 1991, August-Heft, 6-12 
* The Relevance of Philosophy and History of Science and Mathematics for Mathematical Education. In: M. Zweng (Ed.): Proceedings of the Fourth In­ternatio­nal Congress on Mathematical Education. Boston 1983, 444-447


== Arbeitsgebiete ==
== Arbeitsgebiete ==
8

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü