Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Funktion: mengentheoretische Auffassung: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
KKeine Bearbeitungszusammenfassung
Zeile 47: Zeile 47:
| <math>f</math> sei eine (nicht leere) Funktion und <math>f\subseteq A\times B</math> mit nicht leeren Mengen <math>A</math> und <math>B</math>. || (generelle Voraussetzung für das Folgende)
| <math>f</math> sei eine (nicht leere) Funktion und <math>f\subseteq A\times B</math> mit nicht leeren Mengen <math>A</math> und <math>B</math>. || (generelle Voraussetzung für das Folgende)
|-
|-
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls von <math>x</math> ein (und damit genau ein) Zuordnungspfeil nach <math>y</math> verläuft, dann wird notiert:: <math>x\mapsto y</math>  || gelesen: „dem <math>x</math> wird das <math>y</math> zugeordnet“<br />
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls von <math>x</math> ein (und damit genau ein) Zuordnungspfeil nach <math>y</math> verläuft, dann wird notiert: <math>x\mapsto y</math>  || gelesen: „dem <math>x</math> wird das <math>y</math> zugeordnet“<br />
oder: „das <math>y</math> wird dem <math>x</math> zugeordnet“<br />
oder: „das <math>y</math> wird dem <math>x</math> zugeordnet“<br />
oder: „aus <math>x</math> wird <math>y</math>“,<br />
oder: „aus <math>x</math> wird <math>y</math>“,<br />
aber nicht: „<math>x</math> wird zugeordnet <math>y</math>“ (weil dann nicht klar ist, wer wem zugeordnet wird).
aber ''nicht'': „<math>x</math> wird zugeordnet <math>y</math>“ (weil dann nicht klar ist, wer wem zugeordnet wird).
|-
|-
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls <math>x\mapsto y</math> bezüglich der Funktion <math>f</math> gilt, dann ist:: <math>f(x):=y</math> || <math>f(x)</math> heißt dann '''Funktionswert''' von „<math>x</math> bezüglich <math>f</math>, gelesen: „f von x“.<br />
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls <math>x\mapsto y</math> bezüglich der Funktion <math>f</math> gilt, dann ist: <math>f(x):=y</math> || <math>f(x)</math> heißt dann '''Funktionswert''' von „<math>x</math> bezüglich <math>f</math>, gelesen: „f von x“.<br />
<math>f(x)</math> muss nicht als [[Term]] darstellbar sein. <ref>Vgl. die Anmerkungen [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|zur kulturhistorischen Genese]] des Funktionsbegriffs bezüglich Fourier und Dirichlet.</ref>
<math>f(x)</math> muss nicht als [[Term]] darstellbar sein. <ref>Vgl. die Anmerkungen [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|zur kulturhistorischen Genese]] des Funktionsbegriffs bezüglich Fourier und Dirichlet.</ref>
|-
|-
| <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> || '''Definitionsmenge''' von <math>f</math>, auch „Definitionsbereich“, es ist <math>{{\operatorname{D}}_{f}}\subseteq A</math>.<br>
| <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> || '''Definitionsmenge''' von <math>f</math>, auch „Definitionsbereich“; es ist <math>{{\operatorname{D}}_{f}}\subseteq A</math>.<br>
<math>x</math> ist '''Argument''' von <math>f\ \ :\Leftrightarrow \ \ x\in {{\operatorname{D}}_{f}}</math>.
<math>x</math> ist '''Argument''' von <math>f\ \ :\Leftrightarrow \ \ x\in {{\operatorname{D}}_{f}}</math>.
|-
|-
| <math>{{\operatorname{W}}_{f}}:=\{y\in B|</math> es gibt ein <math>x\in A</math> mit <math>y=f(x)\}</math> || '''Wertemenge''' von <math>f</math>, auch „Wertebereich“, es ist <math>{{\operatorname{W}}_{f}}=\{f(x)|x\in A\}\subseteq B</math>.
| <math>{{\operatorname{W}}_{f}}:=\{y\in B|</math> es gibt ein <math>x\in A</math> mit <math>y=f(x)\}</math> || '''Wertemenge''' von <math>f</math>, auch „Wertebereich“, es ist <math>{{\operatorname{W}}_{f}}=\{f(x)|x\in A\}\subseteq B</math>.
|-
|-
| Falls <math>{{\operatorname{D}}_{f}}=A</math>, dann wird notiert:: <math>f\,:A\to B</math> || gelesen: „<math>f</math> ist eine Funktion von <math>A</math> '''in''' <math>B</math>“.<br />
| Falls <math>{{\operatorname{D}}_{f}}=A</math>, dann wird notiert: <math>f\,:A\to B</math> || gelesen: „<math>f</math> ist eine Funktion von <math>A</math> '''in''' <math>B</math>“.<br />
Die Zuordnungspfeile <math>\mapsto</math> und <math>\to</math> sind streng zu unterscheiden, denn z. B. gilt:<br />
Die Zuordnungspfeile <math>\mapsto</math> und <math>\to</math> sind streng zu unterscheiden, denn z. B. gilt:<br />
<math>\{1\}\to \{2,3\}</math> bedeutet: Dem Element <math>1</math> wird eines der beiden Elemente <math>2</math> oder <math>3</math> zugeordnet.<br />
<math>\{1\}\to \{2,3\}</math> bedeutet: Dem Element <math>1</math> wird eines der beiden Elemente <math>2</math> oder <math>3</math> zugeordnet.<br />
Zeile 77: Zeile 77:
|}
|}
<div id="Operator als Funktion"></div>• Ein „'''Operator'''“ ist ebenfalls eine Funktion, in der höheren Mathematik meist von einem Vektorraum in einen Vektorraum, im Mathematikunterricht z. B. beim Aspekt „Bruch als Operator“.<br />
<div id="Operator als Funktion"></div>• Ein „'''Operator'''“ ist ebenfalls eine Funktion, in der höheren Mathematik meist von einem Vektorraum in einen Vektorraum, im Mathematikunterricht z. B. beim Aspekt „Bruch als Operator“.<br />
• Ein „'''Funktional'''“ ist ein Operator von einem „Funktionenraum“ in <math>\mathbb{R}</math> oder <math>\mathbb{C}</math> (z. B. „bestimmtes Integral“). <ref>Das macht die frühere Bezeichnung „Funktionenfunktion“ für „Funktional“ plausibel..</ref>
• Ein „'''Funktional'''“ ist ein Operator von einem „Funktionenraum“ in <math>\mathbb{R}</math> oder <math>\mathbb{C}</math> (z. B. „bestimmtes Integral“). <ref>Das macht die frühere Bezeichnung „Funktionenfunktion“ für „Funktional“ plausibel.</ref>


==Didaktische Vertiefung==
==Didaktische Vertiefung==
Zeile 83: Zeile 83:
* Ein wesentlicher Aspekt beim Funktionsbegriff ist die '''eindeutige [[Zuordnung]]''', die mit „rechtseindeutig“ erfasst werden kann, ohne schon <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> mit voraussetzen zu müssen.
* Ein wesentlicher Aspekt beim Funktionsbegriff ist die '''eindeutige [[Zuordnung]]''', die mit „rechtseindeutig“ erfasst werden kann, ohne schon <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> mit voraussetzen zu müssen.
* Wenn die Ausgangsmenge mit dem Definitionsbereich übereinstimmt, wenn also <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> gilt, wird ''jedem Element der Ausgangsmenge genau ein Element der Zielmenge'' zugeordnet, so dass also <math>f\,:A\to B</math> gilt. Es bietet sich für den Mathematikunterricht an, mit dieser engeren Sichtweise zu beginnen (und ggf. dabei zu bleiben).
* Wenn die Ausgangsmenge mit dem Definitionsbereich übereinstimmt, wenn also <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> gilt, wird ''jedem Element der Ausgangsmenge genau ein Element der Zielmenge'' zugeordnet, so dass also <math>f\,:A\to B</math> gilt. Es bietet sich für den Mathematikunterricht an, mit dieser engeren Sichtweise zu beginnen (und ggf. dabei zu bleiben).
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangsspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s. o.).
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangsspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s.&nbsp;o.).
* Die symbolische Darstellung „<math>f\,:A\to B</math>“ ist eine Mitteilung über eine Funktion <math>f</math> (genauer: eine [[Aussageform]]) und bedeutet definitionsgemäß und ist auch so zu lesen: „<math>f</math> ist eine Funktion von <math>A</math> in <math>B</math>“. Damit ist es sprachlich nicht korrekt, <math>f\,:A\to B</math> eine „Funktion“ zu nennen, sondern korrekt wäre z. B. entweder „die Funktion <math>f</math> von <math>A</math> in <math>B</math>“ oder „die Funktion <math>f</math> mit der Eigenschaft <math>f\,:A\to B</math>“.
* Die symbolische Darstellung „<math>f\,:A\to B</math>“ ist eine Mitteilung über eine Funktion <math>f</math> (genauer: eine [[Aussageform]]) und bedeutet definitionsgemäß und ist auch so zu lesen: „<math>f</math> ist eine Funktion von <math>A</math> in <math>B</math>“. Damit ist es sprachlich nicht korrekt, <math>f\,:A\to B</math> eine „Funktion“ zu nennen, sondern korrekt wäre z. B. entweder „die Funktion <math>f</math> von <math>A</math> in <math>B</math>“ oder „die Funktion <math>f</math> mit der Eigenschaft <math>f\,:A\to B</math>“.
* Es ist zu beachten, dass bei Funktionen der mit dem Symbol <math>f(x)</math> bezeichnete „Funktions'''wert'''“ (ganz im Sinne der kulturhistorischen Tradition) '''nicht notwendig ein [[Term]]''' sein muss, so dass man hier besser nicht immer von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bei [[Funktionenplotter|Funktionenplottern]], die ''nur die Darstellung termdefinierter Funktionen'' ermöglichen können.
* Es ist zu beachten, dass bei Funktionen der mit dem Symbol <math>f(x)</math> bezeichnete „Funktions'''wert'''“ (ganz im Sinne der kulturhistorischen Tradition) '''nicht notwendig ein [[Term]]''' sein muss, so dass man hier besser nicht immer von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bei [[Funktionenplotter|Funktionenplottern]], die ''nur die Darstellung termdefinierter Funktionen'' ermöglichen können.
Zeile 95: Zeile 95:
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
===Fazit===
===Fazit===
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs und leiten über zu den „[[Funktion: viele Gesichter|vielen Gesichtern von Funktionen]]“. <ref>Vgl. [Herget et. al. 2020].</ref> <br />
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs und leiten über zu den „[[Funktion: viele Gesichter|vielen Gesichtern von Funktionen]]“. <ref>Vgl. [Herget et. al. 2000].</ref> <br />
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
* ''die Funktion'' <math>f</math>
* ''die Funktion'' <math>f</math>
Zeile 109: Zeile 109:
* Insbesondere ist dann <math>f</math> für <math>n=1</math> eine '''einstellige Funktion'''.
* Insbesondere ist dann <math>f</math> für <math>n=1</math> eine '''einstellige Funktion'''.
* Mit {{sp}}<math>({{x}_{1}},\ldots ,{{x}_{n}})\in {{A}_{1}}\times \ldots \times {{A}_{n}}</math>{{sp}} gilt also für den zugehörigen Funktionswert {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math> {{sp}}(wobei {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})</math> {{sp}}eine sinnvolle Abkürzung für {{sp}}<math>f(({{x}_{1}},\ldots ,{{x}_{n}}))</math> {{sp}}ist).
* Mit {{sp}}<math>({{x}_{1}},\ldots ,{{x}_{n}})\in {{A}_{1}}\times \ldots \times {{A}_{n}}</math>{{sp}} gilt also für den zugehörigen Funktionswert {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math> {{sp}}(wobei {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})</math> {{sp}}eine sinnvolle Abkürzung für {{sp}}<math>f(({{x}_{1}},\ldots ,{{x}_{n}}))</math> {{sp}}ist).
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „'''Funktionen mehrerer Veränderlicher'''“ zu nennen (für <math>n=1</math> entsprechend „'''Funktion einer Veränderlichen'''“. Das ist streng genommen nicht korrekt, weil ja nicht die Funktion „Veränderliche“ hat; vielmehr sind die Funktionswerte im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|'''Funktionsterme''']], die aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaut sind: Es liegen dann also ''Funktionsterme in mehreren Veränderlichen'' (bzw.: ''in mehreren Variablen'') vor.
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „'''Funktionen mehrerer Veränderlicher'''“ zu nennen (für <math>n=1</math> entsprechend „'''Funktion einer Veränderlichen'''“. Das ist streng genommen nicht korrekt, weil ja nicht die Funktion „Veränderliche“ hat; vielmehr sind die Funktionswerte im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|'''Funktionsterme''']], die aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaut sind: Es liegen dann also ''Funktionsterme in mehreren Veränderlichen'' (bzw. ''in mehreren Variablen'') vor.
* Mit {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> {{sp}} ist {{sp}} <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''.
* Mit {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> {{sp}} ist {{sp}} <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''.


Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü