1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Keine Bearbeitungszusammenfassung |
K (→Übersicht) |
||
Zeile 7: | Zeile 7: | ||
: Es sei <math>f\colon \mathbb{R} \rightarrow \mathbb{R} </math> mit <math>m\in \mathbb{R}</math>, <math>b\in \mathbb{R}</math> und <math>f(x)=m·x+b</math> für alle <math>x\in \mathbb{R}</math>.<br /> | : Es sei <math>f\colon \mathbb{R} \rightarrow \mathbb{R} </math> mit <math>m\in \mathbb{R}</math>, <math>b\in \mathbb{R}</math> und <math>f(x)=m·x+b</math> für alle <math>x\in \mathbb{R}</math>.<br /> | ||
: <math>f</math> ist dann eine '''lineare Funktion'''. | : <math>f</math> ist dann eine '''lineare Funktion'''. | ||
Das ''Schaubild'' des Funktionsgraphen von <math>f</math> ist eine '''Gerade''' mit der '''Steigung''' <math>m</math>. Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der <math>x</math>–Achse als Rechtsachse und der <math>y</math>–Achse als Hochachse dar, so ist <math>b</math> der sog. '''<math>y</math>–Achsenabschnitt''', die Gerade verläuft also dann durch den Punkt mit den Koordinaten <math>(0;b)</math>. | Das ''[[Schaubild]]'' des Funktionsgraphen von <math>f</math> ist eine '''Gerade''' mit der '''Steigung''' <math>m</math>. Stellt man diese Gerade in einem kartesischen Koordinatensystem mit der <math>x</math>–Achse als Rechtsachse und der <math>y</math>–Achse als Hochachse dar, so ist <math>b</math> der sog. '''<math>y</math>–Achsenabschnitt''', die Gerade verläuft also dann durch den Punkt mit den Koordinaten <math>(0;b)</math>. | ||
== Ergänzungen und Anmerkungen == | == Ergänzungen und Anmerkungen == | ||
* Im Mathematikunterricht tauchen anfangs noch nicht lineare Funktionen von <math>\mathbb{R}</math> in <math>\mathbb{R}</math> auf, sondern allenfalls von <math>\mathbb{Q}</math> in <math>\mathbb{Q}</math> oder sogar nur von Teilmengen davon. | * Im Mathematikunterricht tauchen anfangs noch nicht lineare Funktionen von <math>\mathbb{R}</math> in <math>\mathbb{R}</math> auf, sondern allenfalls von <math>\mathbb{Q}</math> in <math>\mathbb{Q}</math> oder sogar nur von Teilmengen davon. |