1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
(Die Seite wurde neu angelegt: „== Übersicht == Die meist so genannten „linearen Funktionen“ gehören zu den ersten sog. „elementaren Funktionen“, die im Mathematikunterricht auftret…“) |
Keine Bearbeitungszusammenfassung |
||
Zeile 10: | Zeile 10: | ||
* Es sind „Steigung“ und „Anstieg“ zu unterscheiden: Der Anstieg ist die (absolute) „Höhendifferenz“ zwischen zwei Punkten auf einer Geraden, die Steigung ist hingegen die „relative Höhendifferenz“ zwischen zwei Punkten einer Geraden, also der Quotient aus der absoluten Höhendifferenz und der absoluten "Entfernungsdifferenz". | * Es sind „Steigung“ und „Anstieg“ zu unterscheiden: Der Anstieg ist die (absolute) „Höhendifferenz“ zwischen zwei Punkten auf einer Geraden, die Steigung ist hingegen die „relative Höhendifferenz“ zwischen zwei Punkten einer Geraden, also der Quotient aus der absoluten Höhendifferenz und der absoluten "Entfernungsdifferenz". | ||
* Die Steigung kann man – wie bei Verkehrsschildern üblich – auch in Prozent angeben. | * Die Steigung kann man – wie bei Verkehrsschildern üblich – auch in Prozent angeben. | ||
* Die (übliche) Bezeichnung „lineare Funktion“ ist für hier betrachteten Funktionen eigentlich nicht korrekt: Geht man nämlich davon aus, dass „Abbildung“ und „Funktion“ Synonyme sind, so wird das Problem sofort klar, denn für eine „lineare Abbildung“ gilt <math>f(x)=m·x</math>, also ist dann <math>b=0</math>. Funktionen vom Typ <math>f(x)=m·x+b</math> müssten daher eigentlich „affine Funktionen“ genannt werden. | * Die (übliche) Bezeichnung „lineare Funktion“ ist für die hier betrachteten Funktionen eigentlich nicht korrekt: Geht man nämlich davon aus, dass „Abbildung“ und „Funktion“ Synonyme sind, so wird das Problem sofort klar, denn für eine „lineare Abbildung“ gilt <math>f(x)=m·x</math>, also ist dann <math>b=0</math>. Funktionen vom Typ <math>f(x)=m·x+b</math> müssten daher eigentlich „affine Funktionen“ genannt werden. | ||
* Die im Mathematikunterricht übliche Bezeichnung „proportionale Funktion“ ist vom Typ <math>f(x)=m·x</math> und also im Sinne der (Linearen) Algebra eine „lineare Abbildung“. | * Die im Mathematikunterricht übliche Bezeichnung „proportionale Funktion“ ist vom Typ <math>f(x)=m·x</math> und also im Sinne der (Linearen) Algebra eine „lineare Abbildung“. |