Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Frank Schumann/Publikationen: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
[gesichtete Version][gesichtete Version]
Zeile 99: Zeile 99:
* '''Scheitelform und Normalform'''. Im Lernvideo wird an zwei Beispielen erläutert, wie man vorgehen kann, um aus der Normalform y = x^2+px+q die Scheitelform y = (x+d)^2+e (auch Scheitelpunktsform genannt) zu berechnen. Dabei wird die Normalform auf die Scheitelform zurückgeführt.
* '''Scheitelform und Normalform'''. Im Lernvideo wird an zwei Beispielen erläutert, wie man vorgehen kann, um aus der Normalform y = x^2+px+q die Scheitelform y = (x+d)^2+e (auch Scheitelpunktsform genannt) zu berechnen. Dabei wird die Normalform auf die Scheitelform zurückgeführt.
* '''Optimierungsaufgabe'''. Im Lernvideo wird eine Optimierungsaufgabe exemplarisch vorgestellt. Durch Berechnung des Scheitelpunktes S einer quadratischen Funktion wird die Problemaufgabe (ohne Ableiten) gelöst.
* '''Optimierungsaufgabe'''. Im Lernvideo wird eine Optimierungsaufgabe exemplarisch vorgestellt. Durch Berechnung des Scheitelpunktes S einer quadratischen Funktion wird die Problemaufgabe (ohne Ableiten) gelöst.
* '''Drei Punkte auf einer Parabel'''. Im Lernvideo wird gezeigt, wie man eine Gleichung einer quadratischen Funktion in Allgemeiner Form berechnen kann, wenn drei Parabelpunkte bekannt sind.
* '''Nullstellen quadratischer Funktionen'''. Im Lernvideo wird der Begriff Nullstelle einer quadratischen Funktion exemplarisch eingeführt. Die Bestimmung von Nullstellen erfolgt sowohl graphisch als auch rechnerisch (ohne Lösungsformel).
* '''Nullstellen quadratischer Funktionen'''. Im Lernvideo wird der Begriff Nullstelle einer quadratischen Funktion exemplarisch eingeführt. Die Bestimmung von Nullstellen erfolgt sowohl graphisch als auch rechnerisch (ohne Lösungsformel).
* '''Herleiten der p-q-Lösungsformel'''. In diesem Lernvideo wird die p-q-Lösungsformel zur Bestimmung exakter Nullstellen quadratischer Funktionen mit Funktionsgleichungen in der Normalform hergeleitet.
* '''Herleiten der p-q-Lösungsformel'''. In diesem Lernvideo wird die p-q-Lösungsformel zur Bestimmung exakter Nullstellen quadratischer Funktionen mit Funktionsgleichungen in der Normalform hergeleitet.
447

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü