Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Frank Schumann/Publikationen: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 37: Zeile 37:
====Binomialverteilung====
====Binomialverteilung====
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Binomialverteilung.html
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Binomialverteilung.html
* '''Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung'''. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.
* '''Varianz und Standardabweichung'''. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Varianz und Standardabweichung'''. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Minilotto "3 aus 7"'''. Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.
* '''Minilotto "3 aus 7"'''. Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.
Zeile 48: Zeile 49:
====Gleichungssysteme====
====Gleichungssysteme====
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Gleichungsysteme.html
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Gleichungsysteme.html
* '''Graphen linearer Zuordnungen zeichnen'''. In diesem Lernvideo wird das Vorgehen zum kontrollierten Üben zum Zeichnen von Graphen linearer Zuordnungen mit einem GeoGebra-Arbeitsblatt sukzessive demonstriert. Lösungstexte und zugehörige Geraden mit Steigungsdreieck werden über Kontrollkästchen im Einzelnen sichtbar gemacht. Schieberegler können zum Variieren von Zahlen genutzt werden.
* '''Zwei lineare Zuordnungen kreuzen sich'''. Im Lernvideo wird das Problem, wie man die Koordinaten eines Geradenschnittpunktes aus zwei linearen Gleichungen bestimmen kann, in GeoGebra entwickelt und durch eine Aufgabe konkretisiert. Die rechnerische Lösung der Aufgabe steht dabei im Mittelpunkt der Illustrationen. Der Ansatz zur Gleichsetzung der beiden „y-Terme“ wird in einer Analyse zur Aufgabe anschaulich begründet und durch Äquivalenzumformgen an einer linearen Gleichung mit nur einer Variablen zur Lösung verwandelt. Die rechnerische Probe an zwei linearen Gleichungen mit zwei Variablen zeigt die Übereinstimmung der beiden „y-Werte“.
* '''Zwei lineare Zuordnungen kreuzen sich'''. Im Lernvideo wird das Problem, wie man die Koordinaten eines Geradenschnittpunktes aus zwei linearen Gleichungen bestimmen kann, in GeoGebra entwickelt und durch eine Aufgabe konkretisiert. Die rechnerische Lösung der Aufgabe steht dabei im Mittelpunkt der Illustrationen. Der Ansatz zur Gleichsetzung der beiden „y-Terme“ wird in einer Analyse zur Aufgabe anschaulich begründet und durch Äquivalenzumformgen an einer linearen Gleichung mit nur einer Variablen zur Lösung verwandelt. Die rechnerische Probe an zwei linearen Gleichungen mit zwei Variablen zeigt die Übereinstimmung der beiden „y-Werte“.
* '''LGS (2x2) graphisch lösen'''. Im Lernvideo wird gezeigt, wie man in 5 Schritten die Standardaufgabe: „Löse ein lineares Gleichungssystem vom Typ (2 kreuz 2) auf graphischen Wege“ erfüllen kann. Ein dynamisches GeoGebra-Arbeitsblatt unterstützt die Kontrolle der Schritte 1 bis 4 durch entsprechende Interaktivität.  Die Handhabung des GeoGebra-Arbeitsblattes wird ausführlich demonstriert.
* '''LGS (2x2) graphisch lösen'''. Im Lernvideo wird gezeigt, wie man in 5 Schritten die Standardaufgabe: „Löse ein lineares Gleichungssystem vom Typ (2 kreuz 2) auf graphischen Wege“ erfüllen kann. Ein dynamisches GeoGebra-Arbeitsblatt unterstützt die Kontrolle der Schritte 1 bis 4 durch entsprechende Interaktivität.  Die Handhabung des GeoGebra-Arbeitsblattes wird ausführlich demonstriert.
* '''Einsetzungsverfahren'''. Im Lernvideo wird das Einsetzungsverfahren zum Lösen linearer Gleichungssysteme vom Typ (2x2) an zwei Beispielen erläutert. In der CAS- und Graphikansicht von GeoGebra werden die interaktiven Abläufe für die Kontrollrechnungen zur Existenz und die Eindeutigkeit der Lösung demonstriert.


====Konstruieren | Messen | Berechnen====
====Konstruieren | Messen | Berechnen====
Zeile 62: Zeile 65:
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Kreisberechnungen_und_Koerperberechnungen.html
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Kreisberechnungen_und_Koerperberechnungen.html
* '''Kreiszahl Pi approximieren'''. Im Lernvideo wird die Kreiszahl Pi approximiert. Zunächst wird die Lösungsidee für die Approximation geometrisch durch Dynamisierung regelmäßiger Polygone am Kreis veranschaulicht. Anschließend werden analytische Ausdrücke zur Berechnung von Polygonumfängen ermittelt und zur Approximation der Zahl Pi genutzt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Kreiszahl Pi approximieren'''. Im Lernvideo wird die Kreiszahl Pi approximiert. Zunächst wird die Lösungsidee für die Approximation geometrisch durch Dynamisierung regelmäßiger Polygone am Kreis veranschaulicht. Anschließend werden analytische Ausdrücke zur Berechnung von Polygonumfängen ermittelt und zur Approximation der Zahl Pi genutzt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.
* '''Kreistangente'''. Im Lernvideo geht es im Wesentlichen um Kreistangenten. Die Begriffe Passante, Sekante, Kreistangente und Zentrale werden zu Beginn des Lernvideo definiert. Es werden die drei Fragen: 1. Was ist eine Kreistangente? 2. Wie konstruiert man mit Z&L eine Kreistangente in einem Berührpunkt? 3. Wie konstruiert man mit Z&L eine Kreistangente von einem Punkt P, der außerhalb eines Kreises liegt? beantwortet und begründet. Am Ende des LV werden drei Sätze über Kreistangenten formuliert, die im Wesentlichen auf Symmetrieeigenschaften beruhen. Hierzu wird von mir die Mathematiksoftware GeoGebra genutzt.


====Planimetrie====
====Planimetrie====
447

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü