1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[gesichtete Version] | [gesichtete Version] |
Zeile 105: | Zeile 105: | ||
: Dann ist <math>f</math> eine '''<math>n</math>-stellige Funktion'''. <br /><br /> | : Dann ist <math>f</math> eine '''<math>n</math>-stellige Funktion'''. <br /><br /> | ||
* Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>. | * Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>. | ||
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen. Das ist streng genommen nicht korrekt, weil ja nicht die Funktion „Veränderliche“ hat; vielmehr sind | * Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen. Das ist streng genommen nicht korrekt, weil ja nicht die Funktion „Veränderliche“ hat; vielmehr sind die Funktionswerte im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|'''Funktionsterme''']], die aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaut sind: Es liegen dann also ''Funktionsterme in mehreren Veränderlichen'' (bzw.: ''in mehreren Variablen'') vor. | ||
* Mit <math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> ist <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''. | * Mit <math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> ist <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''. | ||