Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Relation: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
61 Bytes hinzugefügt ,  20. August 2013
K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
(Die Seite wurde neu angelegt: „==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>== Der Terminus „Relation“ wird in der he…“)
 
KKeine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
<small><small>Verfasst von [[Horst Hischer]]</small></small>
==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>==
==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>==
Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ (und damit als „[[Zuordnung]]“) verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob <math>a</math> zu <math>b</math> „gehört“ bzw. ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls etwa <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden<br />
Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ (und damit als „[[Zuordnung]]“) verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob <math>a</math> zu <math>b</math> „gehört“ bzw. ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls etwa <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden<br />
Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü