1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
==Übersicht <small><small><ref>Die | ==Übersicht <small><small><ref>Die Darstellung basiert auf [Hischer 2012, Kapitel 4 und 5].</ref></small></small>== | ||
„Relation“ | Der Terminus „Relation“ wird in der heutigen Mathematik mit Bezug auf den Gebrauch in der Philosophie im Sinne von „Beziehung“ verwendet, und so wird es im einfachsten Fall im mathematischen Kontext darum gehen, „Beziehungen“ zwischen zwei Mengen bzw. genauer: zwischen den Elementen von zwei Mengen zu beschreiben, also darum, ob <math>a</math> zu <math>b</math> „gehört“ bzw. ob und wie <math>a</math> zu <math>b</math> „in Beziehung steht“, falls etwa <math>a\in A</math> und <math>b\in B</math> gilt. Eine solche Relation kann z. B. durch eine Gleichung wie <math>{{a}^{2}}=2b-1</math> oder eine Ungleichung wie <math>3a<2\sqrt{b}</math> beschrieben werden<br /> | ||
Sofort ist ersichtlich, dass eine konkrete, etwa mit <math>R</math> | |||
bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare <math>(a,b)</math> aus der „Produktmenge“ <math>A\times B</math> gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge <math>A\times B</math> als ''„Relation zwischen <math>A</math> und <math>B</math>“'' – oder genauer: als ''„Relation von <math>A</math> nach <math>B</math>“'' – aufzufassen.<br /> | bezeichnete Relation dann zutreffend durch die Angabe derjenigen geordneten Paare <math>(a,b)</math> aus der „Produktmenge“ <math>A\times B</math> gekennzeichnet werden kann, die hier „in Beziehung stehen“. Das führt dazu, jede Teilmenge einer solchen Produktmenge <math>A\times B</math> als ''„Relation zwischen <math>A</math> und <math>B</math>“'' – oder genauer: als ''„Relation von <math>A</math> nach <math>B</math>“'' – aufzufassen.<br /> | ||
Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. | Da eine solche „Relation“ als Menge von geordneten Paaren aber ihre Zusammensetzung bzw. Struktur nicht verliert, wenn man in <math>A\times B</math> anstelle von <math>A</math> und <math>B</math> beliebige Obermengen wählt, liegt es nahe, bereits diese Menge von geordneten Paaren als „Relation“ zu bezeichnen, also ohne die Angabe einer bestimmten Produktmenge <math>A\times B</math> als Bezugsmenge. Beide Wege sind sinnvoll und jeweils situativ zu wählen. | ||
==Definitionen== | |||
Der formalmathematischen Definition von „Relation liegt“ das „geordnete Paar“ zugrunde, etwa mit <math>(a,b)</math> bezeichnet, wobei es im Gegensatz zur mit <math>\{a,b\}</math> bezeichneten Menge auf die Reihenfolge der beiden „Elemente“ ankommt. In diesem Sinne kann man die Darstellung <math>(a,b)</math> als unmittelbar einsichtig im Sinne eines undefinierten Grundbegriffs verwenden, aber dem polnischen Mathematiker [http://de.wikipedia.org/wiki/Kazimierz_Kuratowski Kazimierz '''Kuratowski''']) gelang es 1921, das „geordnete Paar“ mengentheoretisch zu definieren. Dieser formale Aufbau wird kurz angedeutet: | |||
{| class="wikitable" | |||
|- | |||
! Definitionen !! Anmerkungen | |||
|- | |||
| Für beliebige Objekte <math>a, b</math> gilt:: | |||
<math>(a,b):=\{\{a\},\{a,b\}\}</math>|| <math>(a,b)</math> heißt „'''geordnetes Paar'''“.<br /> | |||
Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass <math>(a,b)=(b,a)\Leftrightarrow a=b</math> gilt.<br /> | |||
<math>(a,b)</math> lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern (<math>n=3</math: '''Tripel''', <math>n=4</math: '''Quadrupel'''>). | |||
|- | |||
| Beispiel || Beispiel | |||
|- | |||
| Beispiel || Beispiel | |||
|- | |||
| Beispiel || Beispiel | |||
|- | |||
| Beispiel || Beispiel | |||
|- | |||
| Beispiel || Beispiel | |||
|} | |||