1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Keine Bearbeitungszusammenfassung |
|||
Zeile 140: | Zeile 140: | ||
| Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen. | | Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen. | ||
|- | |- | ||
| <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph'''). | | <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph'''). Es gilt <math>{{\operatorname{G}}_{f}}</math> | ||
|} | |} | ||
Zeile 154: | Zeile 154: | ||
====Funktionsgraph==== | ====Funktionsgraph==== | ||
* Die übliche o. g. Definition des Funktionsgraphen gemäß <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> resultiert aus dem Wunsch der Darstellung der Wertepaare <math>(x,f(x))</math> durch Punkte in einem Koordinatensystem, wobei diese Wertepaare <math>(x,f(x))</math> nicht notwendig numerischer Art sein müssen. Wenn nun aber eine Funktion formal streng als spezielle Relation definiert wird und eine Relation ja gerade eine Menge geordneter Paare ist, so erhalten wir: <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math> | * Die übliche o. g. Definition des Funktionsgraphen gemäß <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> resultiert aus dem Wunsch der Darstellung der Wertepaare <math>(x,f(x))</math> durch Punkte in einem Koordinatensystem, wobei diese Wertepaare <math>(x,f(x))</math> nicht notwendig numerischer Art sein müssen. Wenn nun aber eine Funktion formal streng als spezielle Relation definiert wird und eine Relation ja gerade eine Menge geordneter Paare ist, so erhalten wir: <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math>. | ||
* Konsequenz: Es gibt keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' bezeichnen kann. <ref>Vgl. den ersten Abschnitt.</ref> Auch der von einem [[Funktionenplotter]] erzeugte Funktionsplot ist damit eine Funktion.<br /> | * Konsequenz: Es gibt keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' bezeichnen kann. <ref>Vgl. den ersten Abschnitt.</ref> Auch der von einem [[Funktionenplotter]] erzeugte Funktionsplot ist damit eine Funktion.<br /> | ||
Das führt zu einer durchaus erfreulichen Weite des mit „Funktion“ bezeichneten Begriffs leitet ueber zu den vielen „Gesichtern von Funktionen“. Zugleich ist anzumerken, dass die mengentheoretische Auffassung von „Funktion als rechtseindeutiger Relation“ beweistechnisch erhebliche Möglichkeiten eröffnet. | Das führt zu einer durchaus erfreulichen Weite des mit „Funktion“ bezeichneten Begriffs leitet ueber zu den vielen „Gesichtern von Funktionen“. Zugleich ist anzumerken, dass die mengentheoretische Auffassung von „Funktion als rechtseindeutiger Relation“ beweistechnisch erhebliche Möglichkeiten eröffnet. | ||
Zeile 163: | Zeile 163: | ||
===Beispiele=== | ===Beispiele=== | ||
==== | ====Funktionsterm als Funktion==== | ||
Ein beliebiger gemäß Definition eines arithmetischen [[Term|Terms]] gebildeter Funktionsterm <math>f(x)</math> ordnet jeder reellen oder komplexen Zahl <math>x</math> genau einen Wert zu, nämlich <math>f(x)</math>. Die Menge aller solcher geordneten Paare <math>(x,f(x)</math> ist damit rechtseindeutig, und daher ist bereits durch den Funktionsterm <math>f(x)</math> eine Funktion gegeben, was dazu führt, diesen mit der Funktion <math>f</math> zwar nicht formal, aber inhaltlich im Wesentlichen identifizieren zu können. Obwohl also „eigentlich“ erst <math>f</math> die Funktion ist, steht bereits der Funktionsterm <math>f(x)</math> gleichermaßen für diese Funktion. | |||
====Funktionsgraph als Funktion==== | ====Funktionsgraph als Funktion==== | ||
Ist <math>f\,:A\to B</math>, so ist der zugehörige Funktionsgraph durch <math>{{\operatorname{G}}_{f}}=\{(x,f(x))|x\in A\}\subseteq A\times B</math> gegeben, und es wurde bereits festgestellt, dass <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math> gilt, also kurz <math>f={{\operatorname{G}}_{f}}</math>. Interpretiert man das in einem (nicht notwendig numerischen) kartesischen Koordinatensystem als Darstellung von mit<math>(x,f(x)</math> bezeichneten „Punkten“, so wird auf diese Weise jedem <math>x\in A</math> genau ein<math>f(x)\in B</math> zugeordnet, womit also der Funktionsgraph auch in dieser Sichtweise bereits eine Funktion '''ist'''. | |||
====Funktionsplot als Funktion==== | ====Funktionsplot als Funktion==== | ||
Siehe hierzu die Erläuterungen unter [[Funktionenplotter]]. | |||
====Digitalisierung und Diskretisierung als Funktionen==== | ====Digitalisierung und Diskretisierung als Funktionen==== | ||
(folgt) | |||
====Hörbare Funktionen==== | ====Hörbare Funktionen==== | ||
(folgt) | |||
====Sichtbare Funktionen==== | ====Sichtbare Funktionen==== | ||
(folgt) | |||