447
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[unmarkierte Version] | [unmarkierte Version] |
K (→2013) |
(→2013) |
||
Zeile 90: | Zeile 90: | ||
===2013=== | ===2013=== | ||
* [[Frank Schumann]]: 8 Lernvideos zum Thema '''Winkelfunktionen''': | * [[Frank Schumann]]: 8 Lernvideos zum Thema '''Winkelfunktionen''':<BR>'''Sinus und Kosinus am Einheitskreis'''. Am Einheitskreis wird der Sinus und Kosinus für Winkel zwischen 0° und 360° definiert. Es werden Animationen für verschiedene Winkel sichtbar. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | ||
'''Sinus und Kosinus am Einheitskreis'''. Am Einheitskreis wird der Sinus und Kosinus für Winkel zwischen 0° und 360° definiert. Es werden Animationen für verschiedene Winkel sichtbar. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | |||
'''Das Bogenmaß - eine reelle Zahl'''. Das Bogenmaß ist ein Alternative für das Gradmaß. Es wird der Zusammenhang zwischen Gradmaß und Bogenmaß am Einheitskreis illustriert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | '''Das Bogenmaß - eine reelle Zahl'''. Das Bogenmaß ist ein Alternative für das Gradmaß. Es wird der Zusammenhang zwischen Gradmaß und Bogenmaß am Einheitskreis illustriert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | ||
'''Die Sinusfunktion mit y=sin(x)'''. Aus dem Einheitskreis wird sukzessive der Graph der Sinusfunktion gewonnen. Der Definitionsbereich ist das Grundintervall von 0 bis 2π. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | '''Die Sinusfunktion mit y=sin(x)'''. Aus dem Einheitskreis wird sukzessive der Graph der Sinusfunktion gewonnen. Der Definitionsbereich ist das Grundintervall von 0 bis 2π. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | ||
Zeile 101: | Zeile 100: | ||
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Winkelfunktionen.html | Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Winkelfunktionen.html | ||
* [[Frank Schumann]]: 8 Lernvideos zum Thema '''Binomialverteilung''': | * [[Frank Schumann]]: 8 Lernvideos zum Thema '''Binomialverteilung''':<BR>'''Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung'''. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.<BR> | ||
'''Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung'''. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.<BR> | |||
'''Varianz und Standardabweichung'''. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | '''Varianz und Standardabweichung'''. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | ||
'''Minilotto "3 aus 7"'''. Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.<BR> | '''Minilotto "3 aus 7"'''. Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.<BR> | ||
Zeile 110: | Zeile 108: | ||
'''Bernoulli-Ketten und die Rekursion von n=3 auf n=2'''. Es wird die Technik der Rekursion auf Bernoulli-Ketten der Länge n=3 angewendet, um Wahrscheinlichkeiten für verschiedene Trefferzahlen zu definieren.<BR> | '''Bernoulli-Ketten und die Rekursion von n=3 auf n=2'''. Es wird die Technik der Rekursion auf Bernoulli-Ketten der Länge n=3 angewendet, um Wahrscheinlichkeiten für verschiedene Trefferzahlen zu definieren.<BR> | ||
'''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.<BR> | '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.<BR> | ||
'''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.<BR> | |||
Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Stochastik.html | Alle Videos, Zusatzdateien und Beschreibungen auf: http://www.in-mathe-einfach-besser.de/Frank_Schumann_Stochastik.html | ||
Bearbeitungen