Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de

Kurvendiskussion mit CAS: Unterschied zwischen den Versionen

Zur Navigation springen Zur Suche springen
K
[unmarkierte Version][unmarkierte Version]
KKeine Bearbeitungszusammenfassung
Zeile 38: Zeile 38:
[[Datei:Faltnetz.jpeg]]
[[Datei:Faltnetz.jpeg]]
[[Datei:3D Plot.png| thumb| 3D Plot mit Casio ClassPad 300]]
[[Datei:3D Plot.png| thumb| 3D Plot mit Casio ClassPad 300]]
Wir entnehmen die Maße <math> a=7,1 cm </math> und <math> h=19,7 cm </math>. Damit ergibt sich ein Volumen von <math> 993 cm^3 </math>. Erkennt man <math> a </math> und <math> h </math> als variierbare Größen, kommt man auf die Funktion <math> M(a,h)=(h+2\cdot \frac{a}{2}+2\cdot 0,6)\cdot(4a+0,6) </math> für den Materialverbrauch.
Wir entnehmen die Maße <math> a=7,1 cm </math> und <math> h=19,7 cm </math>. Damit ergibt sich ein Volumen von <math> 993 cm^3 </math>. Da die Milchtüte im gefüllten Zustand leicht bauchig war, kann man ein Volumen von <math> 1000 cm^3 </math> annehmen. Erkennt man <math> a </math> und <math> h </math> als variierbare Größen, kommt man auf die Funktion <math> M(a,h)=(h+2\cdot \frac{a}{2}+2\cdot 0,6)\cdot(4a+0,6) </math> für den Materialverbrauch.
An dieser Stelle kann man nun den CAS-Rechner bemühen und sich den 3-D Plot darstellen lassen(Abbildung rechts). Doch ist dies leider noch nicht zielführend, da der Graph in seiner Gesamtheit nicht von Interesse ist.  
An dieser Stelle kann man nun den CAS-Rechner bemühen und sich den 3-D Plot darstellen lassen(Abbildung rechts). Doch ist dies leider noch nicht zielführend, da der Graph in seiner Gesamtheit nicht von Interesse ist.  


88

Bearbeitungen

Cookies helfen uns bei der Bereitstellung von dev_madipedia. Durch die Nutzung von dev_madipedia erklärst du dich damit einverstanden, dass wir Cookies speichern.

Navigationsmenü