Funktion: mengentheoretische Auffassung: Unterschied zwischen den Versionen

K
Korrektur im Literaturverzeichnis
[gesichtete Version][gesichtete Version]
K (Korrektur im Literaturverzeichnis)
 
(14 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
==Übersicht==
==Übersicht==
<div id="Übersicht"></div>Die Untersuchung der [[Funktion: kulturhistorische Aspekte|kulturhistorischen Entstehung und Entwicklung des Funktionsbegriffs]] zeigt, wie sich aus ersten Ansätzen bei babylonischen Tabellen, bei der Erfindung von Notentexten, bei der Untersuchung und Darstellung zeitabhängiger [[Größe|Größen]], bei freihändig gezeichneten „Kurven“, bei „analytischen Ausdrücken“ (als [[Term|Termen]]) und bei graphischen und tabellarischen Darstellungen empirisch gewonnener Daten im 19. Jh. ein „termfreier“ Funktionsbegriff als „eindeutige [[Zuordnung]]“ entwickelt hat, der schließlich Anfang des 20. Jhs. auf der Grundlage der zuvor durch [http://de.wikipedia.org/wiki/Georg_Cantor Georg Cantor] begründeten Mengenlehre unter Bezug auf „geordnete Paare“ seine formal strenge und saubere Fassung als spezielle [['''Relation''']] erhalten hat. <ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 4 und 5].</ref>
<div id="Übersicht"></div>Die Untersuchung der [[Funktion: kulturhistorische Aspekte|kulturhistorischen Entstehung und Entwicklung des Funktionsbegriffs]] zeigt, wie sich aus ersten Ansätzen bei babylonischen Tabellen, bei der Erfindung von Notentexten, bei der Untersuchung und Darstellung zeitabhängiger [[Größe|Größen]], bei freihändig gezeichneten „Kurven“, bei „analytischen Ausdrücken“ (als [[Term|Termen]]) und bei graphischen und tabellarischen Darstellungen empirisch gewonnener Daten im 19. Jh. ein „termfreier“ Funktionsbegriff als „eindeutige [[Zuordnung]]“ entwickelt hat, der schließlich Anfang des 20. Jhs. auf der Grundlage der zuvor durch [http://de.wikipedia.org/wiki/Georg_Cantor Georg Cantor] begründeten Mengenlehre unter Bezug auf „geordnete Paare“ seine formal strenge und saubere Fassung als spezielle '''[[Relation]]''' erhalten hat. <ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 4 und 5].</ref>


==Grundlegende Definitionen==
==Grundlegende Definitionen==
Zeile 47: Zeile 47:
| <math>f</math> sei eine (nicht leere) Funktion und <math>f\subseteq A\times B</math> mit nicht leeren Mengen <math>A</math> und <math>B</math>. || (generelle Voraussetzung für das Folgende)
| <math>f</math> sei eine (nicht leere) Funktion und <math>f\subseteq A\times B</math> mit nicht leeren Mengen <math>A</math> und <math>B</math>. || (generelle Voraussetzung für das Folgende)
|-
|-
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls von <math>x</math> ein (und damit genau ein) Zuordnungspfeil nach <math>y</math> verläuft, dann wird notiert:: <math>x\mapsto y</math>  || gelesen: „dem <math>x</math> wird das <math>y</math> zugeordnet“<br />
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls von <math>x</math> ein (und damit genau ein) Zuordnungspfeil nach <math>y</math> verläuft, dann wird notiert: <math>x\mapsto y</math>  || gelesen: „dem <math>x</math> wird das <math>y</math> zugeordnet“<br />
oder: „das <math>y</math> wird dem <math>x</math> zugeordnet“<br />
oder: „das <math>y</math> wird dem <math>x</math> zugeordnet“<br />
oder: „aus <math>x</math> wird <math>y</math>“,<br />
oder: „aus <math>x</math> wird <math>y</math>“,<br />
aber nicht: „<math>x</math> wird zugeordnet <math>y</math>“ (weil dann nicht klar ist, wer wem zugeordnet wird).
aber ''nicht'': „<math>x</math> wird zugeordnet <math>y</math>“ (weil dann nicht klar ist, wer wem zugeordnet wird).
|-
|-
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls <math>x\mapsto y</math> bezüglich der Funktion <math>f</math> gilt, dann ist:: <math>f(x):=y</math> || <math>f(x)</math> heißt dann '''Funktionswert''' von „<math>x</math> bezüglich <math>f</math>, gelesen: „f von x“.<br />
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls <math>x\mapsto y</math> bezüglich der Funktion <math>f</math> gilt, dann ist: <math>f(x):=y</math> || <math>f(x)</math> heißt dann '''Funktionswert''' von „<math>x</math> bezüglich <math>f</math>, gelesen: „f von x“.<br />
<math>f(x)</math> muss nicht als [[Term]] darstellbar sein. <ref>Vgl. die Anmerkungen [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|zur kulturhistorischen Genese]] des Funktionsbegriffs bezüglich Fourier und Dirichlet.</ref>
<math>f(x)</math> muss nicht als [[Term]] darstellbar sein. <ref>Vgl. die Anmerkungen [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|zur kulturhistorischen Genese]] des Funktionsbegriffs bezüglich Fourier und Dirichlet.</ref>
|-
|-
| <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> || '''Definitionsmenge''' von <math>f</math>, auch „Definitionsbereich“, es ist <math>{{\operatorname{D}}_{f}}\subseteq A</math>.<br>
| <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> || '''Definitionsmenge''' von <math>f</math>, auch „Definitionsbereich“; es ist <math>{{\operatorname{D}}_{f}}\subseteq A</math>.<br>
<math>x</math> ist '''Argument''' von <math>f\ \ :\Leftrightarrow \ \ x\in {{\operatorname{D}}_{f}}</math>.
<math>x</math> ist '''Argument''' von <math>f\ \ :\Leftrightarrow \ \ x\in {{\operatorname{D}}_{f}}</math>.
|-
|-
| <math>{{\operatorname{W}}_{f}}:=\{y\in B|</math> es gibt ein <math>x\in A</math> mit <math>y=f(x)\}</math> || '''Wertemenge''' von <math>f</math>, auch „Wertebereich“, es ist <math>{{\operatorname{W}}_{f}}=\{f(x)|x\in A\}\subseteq B</math>.
| <math>{{\operatorname{W}}_{f}}:=\{y\in B|</math> es gibt ein <math>x\in A</math> mit <math>y=f(x)\}</math> || '''Wertemenge''' von <math>f</math>, auch „Wertebereich“, es ist <math>{{\operatorname{W}}_{f}}=\{f(x)|x\in A\}\subseteq B</math>.
|-
|-
| Falls <math>{{\operatorname{D}}_{f}}=A</math>, dann wird notiert:: <math>f\,:A\to B</math> || gelesen: „<math>f</math> ist eine Funktion von <math>A</math> '''in''' <math>B</math>“.<br />
| Falls <math>{{\operatorname{D}}_{f}}=A</math>, dann wird notiert: <math>f\,:A\to B</math> || gelesen: „<math>f</math> ist eine Funktion von <math>A</math> '''in''' <math>B</math>“.<br />
Die Zuordnungspfeile <math>\mapsto</math> und <math>\to</math> sind streng zu unterscheiden, denn z. B. gilt:<br />
Die Zuordnungspfeile <math>\mapsto</math> und <math>\to</math> sind streng zu unterscheiden, denn z. B. gilt:<br />
<math>\{1\}\to \{2,3\}</math> bedeutet: Dem Element <math>1</math> wird eines der beiden Elemente <math>2</math> oder <math>3</math> zugeordnet.<br />
<math>\{1\}\to \{2,3\}</math> bedeutet: Dem Element <math>1</math> wird eines der beiden Elemente <math>2</math> oder <math>3</math> zugeordnet.<br />
Zeile 77: Zeile 77:
|}
|}
<div id="Operator als Funktion"></div>• Ein „'''Operator'''“ ist ebenfalls eine Funktion, in der höheren Mathematik meist von einem Vektorraum in einen Vektorraum, im Mathematikunterricht z. B. beim Aspekt „Bruch als Operator“.<br />
<div id="Operator als Funktion"></div>• Ein „'''Operator'''“ ist ebenfalls eine Funktion, in der höheren Mathematik meist von einem Vektorraum in einen Vektorraum, im Mathematikunterricht z. B. beim Aspekt „Bruch als Operator“.<br />
• Ein „'''Funktional'''“ ist ein Operator von einem „Funktionenraum“ in <math>\mathbb{R}</math> oder <math>\mathbb{C}</math> (z. B. „bestimmtes Integral“). <ref>Das macht die frühere Bezeichnung „Funktionenfunktion“ für „Funktional“ plausibel..</ref>
• Ein „'''Funktional'''“ ist ein Operator von einem „Funktionenraum“ in <math>\mathbb{R}</math> oder <math>\mathbb{C}</math> (z. B. „bestimmtes Integral“). <ref>Das macht die frühere Bezeichnung „Funktionenfunktion“ für „Funktional“ plausibel.</ref>


==Didaktische Vertiefung==
==Didaktische Vertiefung==
Zeile 83: Zeile 83:
* Ein wesentlicher Aspekt beim Funktionsbegriff ist die '''eindeutige [[Zuordnung]]''', die mit „rechtseindeutig“ erfasst werden kann, ohne schon <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> mit voraussetzen zu müssen.
* Ein wesentlicher Aspekt beim Funktionsbegriff ist die '''eindeutige [[Zuordnung]]''', die mit „rechtseindeutig“ erfasst werden kann, ohne schon <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> mit voraussetzen zu müssen.
* Wenn die Ausgangsmenge mit dem Definitionsbereich übereinstimmt, wenn also <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> gilt, wird ''jedem Element der Ausgangsmenge genau ein Element der Zielmenge'' zugeordnet, so dass also <math>f\,:A\to B</math> gilt. Es bietet sich für den Mathematikunterricht an, mit dieser engeren Sichtweise zu beginnen (und ggf. dabei zu bleiben).
* Wenn die Ausgangsmenge mit dem Definitionsbereich übereinstimmt, wenn also <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> gilt, wird ''jedem Element der Ausgangsmenge genau ein Element der Zielmenge'' zugeordnet, so dass also <math>f\,:A\to B</math> gilt. Es bietet sich für den Mathematikunterricht an, mit dieser engeren Sichtweise zu beginnen (und ggf. dabei zu bleiben).
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s. o).
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangsspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s.&nbsp;o.).
* Die symbolische Darstellung „<math>f\,:A\to B</math>“ ist eine Aussage (bzw. Eigenschaft) und bedeutet definitionsgemäß und ist so zu lesen: „<math>f</math> ist eine Funktion von <math>A</math> in <math>B</math>“. Damit ist es sprachlich nicht korrekt, <math>f\,:A\to B</math> eine „Funktion“ zu nennen, sondern korrekt wäre z. B. entweder „die Funktion <math>f</math> von <math>A</math> in <math>B</math>“ oder „die Funktion <math>f</math> mit der Eigenschaft <math>f\,:A\to B</math>“.
* Die symbolische Darstellung „<math>f\,:A\to B</math>“ ist eine Mitteilung über eine Funktion <math>f</math> (genauer: eine [[Aussageform]]) und bedeutet definitionsgemäß und ist auch so zu lesen: „<math>f</math> ist eine Funktion von <math>A</math> in <math>B</math>“. Damit ist es sprachlich nicht korrekt, <math>f\,:A\to B</math> eine „Funktion“ zu nennen, sondern korrekt wäre z. B. entweder „die Funktion <math>f</math> von <math>A</math> in <math>B</math>“ oder „die Funktion <math>f</math> mit der Eigenschaft <math>f\,:A\to B</math>“.
* Es ist zu beachten, dass bei Funktionen der mit dem Symbol <math>f(x)</math> bezeichnete „Funktions'''wert'''“ (ganz im Sinne der kulturhistorischen Tradition) '''nicht notwendig ein [[Term]]''' sein muss, so dass man hier besser nicht immer von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bei [[Funktionenplotter|Funktionenplottern]], die ''nur die Darstellung termdefinierter Funktionen'' ermöglichen können.
* Es ist zu beachten, dass bei Funktionen der mit dem Symbol <math>f(x)</math> bezeichnete „Funktions'''wert'''“ (ganz im Sinne der kulturhistorischen Tradition) '''nicht notwendig ein [[Term]]''' sein muss, so dass man hier besser nicht immer von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bei [[Funktionenplotter|Funktionenplottern]], die ''nur die Darstellung termdefinierter Funktionen'' ermöglichen können.
* Offensichtlich kann man nicht termdefinierbare Funktionen mit „überschaubar“ endlichem Definitionsbereich durch eine Tabelle „darstellen“ (also konkret erzeugen), und man kann sich dann sogar jede (auch nicht termdefinierte) Funktion mit endlichem Definitionsbereich als Tabelle zumindest „vorstellen“. Diese „Vorstellung“ von „Funktion als Tabelle“ gilt dann offenbar auch für jede termdefinierbare Funktion mit abzählbarem Definitionsbereich (genannt „'''Folge'''“), und wir können das gedanklich auch auf nicht termdefinierte Folgen fortsetzen, wie etwa folgendes Beispiel zeigt: Es sei <math>f(n)</math> für alle natürlichen Zahlen <math>n</math> die <math>n</math>-te Dezimalstelle von <math>\pi</math>, also <math>f(0)=3</math>, <math>f(1)=1</math>, <math>f(2)=4</math> ..., dann lässt sich dies mit einer (gedachten!) unendlichen Tabelle erfassen und so also auch „vorstellen.“  
* Offensichtlich kann man nicht termdefinierbare Funktionen mit „überschaubar“ endlichem Definitionsbereich durch eine Tabelle „darstellen“ (also konkret erzeugen), und man kann sich dann sogar jede (auch nicht termdefinierte) Funktion mit endlichem Definitionsbereich als Tabelle zumindest „vorstellen“. Diese „Vorstellung“ von „Funktion als Tabelle“ gilt dann offenbar auch für jede termdefinierbare Funktion mit abzählbarem Definitionsbereich (genannt „'''Folge'''“), und wir können das gedanklich auch auf nicht termdefinierte Folgen fortsetzen, wie etwa folgendes Beispiel zeigt: Es sei <math>f(n)</math> für alle natürlichen Zahlen <math>n</math> die <math>n</math>-te Dezimalstelle von <math>\pi</math>, also <math>f(0)=3</math>, <math>f(1)=1</math>, <math>f(2)=4</math> ..., dann lässt sich dies mit einer (gedachten!) unendlichen Tabelle erfassen und so also auch „vorstellen.“  
* Nur dann, wenn <math>y=f(x)</math> gilt und <math>f(x)</math> für alle betrachteten <math>x</math> ein [[Term]] ist, kann man also „<math>y=f(x)</math>“ eine '''Funktionsgleichung''' nennen.
* Nur dann, wenn <math>y=f(x)</math> gilt und <math>f(x)</math> für alle betrachteten <math>x</math> ein [[Term]] ist, kann man also „<math>y=f(x)</math>“ eine '''Funktionsgleichung''' nennen.
<div id="Funktionsgraph_2"></div>


===Funktionsgraph===
===Funktionsgraph===
Zeile 93: Zeile 95:
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
===Fazit===
===Fazit===
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs und leiten über zu den „[[Funktion: viele Gesichter|vielen Gesichtern von Funktionen]]“. <ref>Vgl. [Herget et. al. 2020].</ref> <br />
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs und leiten über zu den „[[Funktion: viele Gesichter|vielen Gesichtern von Funktionen]]“. <ref>Vgl. [Herget et. al. 2000].</ref> <br />
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
* ''die Funktion'' <math>f</math>
* ''die Funktion'' <math>f</math>
* ''der Funktionswert'' <math>f(x)</math>
* ''der Funktionswert'' <math>f(x)</math>
* ''die graphische Darstellung von'' <math>f</math> {{sp}}{{sp}} bzw. {{sp}}{{sp}} ''der Graph von'' <math>f</math>
* ''die graphische (visualisierende) Darstellung von'' <math>f</math> durch ein [[Schaubild_einer_Funktion|''Schaubild'']] von <math>f</math> (meist ungenau „Funktionsgraph“ genannt).
Dieser hier scheinbar immanent vorliegende Widerspruch gründet sich auf die kontextabhängigen „[[Funktion: viele Gesichter|vielen Gesichter von Funktionen]]“, und er kann und sollte bei strengem Vorgehen durchaus vermieden werden. Bei der jedoch faktisch vorliegenden Vielfalt dessen, was Anwender jeweils unter „Funktion“ verstehen, ist es sinnvoll, flexibel mit diesen „Gesichtern“ umgehen zu können. Das betrifft beispielsweise auch die oft so genannten „Funktionen mehrerer Veränderlicher“, die im folgenden Abschnitt „sauber“ definiert werden.
Dieser hier scheinbar immanent vorliegende Widerspruch gründet sich auf die kontextabhängigen „[[Funktion: viele Gesichter|vielen Gesichter von Funktionen]]“, und er kann und sollte bei strengem Vorgehen durchaus vermieden werden. Bei der jedoch faktisch vorliegenden Vielfalt dessen, was Anwender jeweils unter „Funktion“ verstehen, ist es sinnvoll, flexibel mit diesen „Gesichtern“ umgehen zu können. Das betrifft beispielsweise auch die oft so genannten „Funktionen mehrerer Veränderlicher“, die im folgenden Abschnitt definiert werden.


==Mehrstellige Funktionen==
==Mehrstellige Funktionen==
Zeile 104: Zeile 106:
: Es sei <math>n\in {{\mathbb{N}}^{*}}</math> (also <math>n>0</math>), ferner seien <math>{{A}_{1}},\ \ldots ,\ {{A}_{n}},B</math> nicht leere Mengen, und es sei <math>f\,:{{A}_{1}}\times \ldots \times {{A}_{n}}\to B</math>.<br />
: Es sei <math>n\in {{\mathbb{N}}^{*}}</math> (also <math>n>0</math>), ferner seien <math>{{A}_{1}},\ \ldots ,\ {{A}_{n}},B</math> nicht leere Mengen, und es sei <math>f\,:{{A}_{1}}\times \ldots \times {{A}_{n}}\to B</math>.<br />
: Dann ist <math>f</math> eine '''<math>n</math>-stellige Funktion'''. <br /><br />
: Dann ist <math>f</math> eine '''<math>n</math>-stellige Funktion'''. <br /><br />
<div id="einstellige Funktion"></div>
* Insbesondere ist dann <math>f</math> für <math>n=1</math> eine '''einstellige Funktion'''.
* Mit {{sp}}<math>({{x}_{1}},\ldots ,{{x}_{n}})\in {{A}_{1}}\times \ldots \times {{A}_{n}}</math>{{sp}} gilt also für den zugehörigen Funktionswert {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math> {{sp}}(wobei {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})</math> {{sp}}eine sinnvolle Abkürzung für {{sp}}<math>f(({{x}_{1}},\ldots ,{{x}_{n}}))</math> {{sp}}ist).
* Mit {{sp}}<math>({{x}_{1}},\ldots ,{{x}_{n}})\in {{A}_{1}}\times \ldots \times {{A}_{n}}</math>{{sp}} gilt also für den zugehörigen Funktionswert {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math> {{sp}}(wobei {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})</math> {{sp}}eine sinnvolle Abkürzung für {{sp}}<math>f(({{x}_{1}},\ldots ,{{x}_{n}}))</math> {{sp}}ist).
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „'''Funktionen mehrerer Veränderlicher'''“ zu nennen. Das ist streng genommen nicht korrekt, weil ja nicht die Funktion „Veränderliche“ hat; vielmehr sind die Funktionswerte im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|'''Funktionsterme''']], die aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaut sind: Es liegen dann also ''Funktionsterme in mehreren Veränderlichen'' (bzw.: ''in mehreren Variablen'') vor.
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „'''Funktionen mehrerer Veränderlicher'''“ zu nennen (für <math>n=1</math> entsprechend „'''Funktion einer Veränderlichen'''“. Das ist streng genommen nicht korrekt, weil ja nicht die Funktion „Veränderliche“ hat; vielmehr sind die Funktionswerte im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|'''Funktionsterme''']], die aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaut sind: Es liegen dann also ''Funktionsterme in mehreren Veränderlichen'' (bzw. ''in mehreren Variablen'') vor.
* Mit {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> {{sp}} ist {{sp}} <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''.
* Mit {{sp}}<math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> {{sp}} ist {{sp}} <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''.


Zeile 113: Zeile 117:
* Herget, Wilfried & Malitte, Elvira  & Richter, Karin [2000]: ''Funktionen haben viele Gesichter – auch im Unterricht!'' In: Flade, Lothar & Herget, Wilfried (Hrsg.): Mathematik lehren und lernen nach TIMSS – Anregungen für die Sekundarschulen. Berlin: Verlag Volk und Wissen, 2000, 115–124.
* Herget, Wilfried & Malitte, Elvira  & Richter, Karin [2000]: ''Funktionen haben viele Gesichter – auch im Unterricht!'' In: Flade, Lothar & Herget, Wilfried (Hrsg.): Mathematik lehren und lernen nach TIMSS – Anregungen für die Sekundarschulen. Berlin: Verlag Volk und Wissen, 2000, 115–124.
* Hischer, Horst [2012]: ''Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung. Struktur – Funktion – Zahl''. Wiesbaden: Springer Spektrum.
* Hischer, Horst [2012]: ''Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung. Struktur – Funktion – Zahl''. Wiesbaden: Springer Spektrum.
* — [2016]: ''Mathematik – Medien – Bildung. Medialitätsbewusstsein als Bildungsziel: Theorie und Beispiele''. Wiesbaden: Springer Spektrum.


==Anmerkungen==
==Anmerkungen==
<references />
<references />
{{zitierhinweis|Horst Hischer}}
{{zitierhinweis|Horst Hischer}}