Funktion: mengentheoretische Auffassung: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
KKeine Bearbeitungszusammenfassung
Zeile 1: Zeile 1:
<small><small>Verfasst von [[Horst Hischer]]</small></small>
<small><small>Verfasst von [[Horst Hischer]]</small></small>
==Übersicht==
==Übersicht==
<div id="Übersicht"></div>Die Untersuchung der [[Funktion: kulturhistorische Aspekte|kulturhistorischen Entstehung und Entwicklung des Funktionsbegriffs]] zeigt, wie sich aus ersten Ansätzen bei babylonischen Tabellen, bei der Erfindung von Notentexten, bei der Untersuchung und Darstellung zeitabhängigen [[Größe|Größen]], bei freihändig gezeichneten „Kurven“, bei „analytischen Ausdrücken“ (als [[Term|Termen]]) und bei graphischen und tabellarischen Darstellungen empirisch gewonnener Daten im 19. Jh. ein „termfreier“ Funktionsbegriff als „eindeutige [[Zuordnung]]“ entwickelt hat, der schließlich Anfang des 20. Jhs. auf der Grundlage der zuvor durch [http://de.wikipedia.org/wiki/Georg_Cantor Georg Cantor] begründeten Mengenlehre unter Bezug auf „geordnete Paare“ seine formal strenge und saubere Fassung als spezielle [[Relation]] erhalten hat. <ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 4 und 5].</ref>
<div id="Übersicht"></div>Die Untersuchung der [[Funktion: kulturhistorische Aspekte|kulturhistorischen Entstehung und Entwicklung des Funktionsbegriffs]] zeigt, wie sich aus ersten Ansätzen bei babylonischen Tabellen, bei der Erfindung von Notentexten, bei der Untersuchung und Darstellung zeitabhängiger [[Größe|Größen]], bei freihändig gezeichneten „Kurven“, bei „analytischen Ausdrücken“ (als [[Term|Termen]]) und bei graphischen und tabellarischen Darstellungen empirisch gewonnener Daten im 19. Jh. ein „termfreier“ Funktionsbegriff als „eindeutige [[Zuordnung]]“ entwickelt hat, der schließlich Anfang des 20. Jhs. auf der Grundlage der zuvor durch [http://de.wikipedia.org/wiki/Georg_Cantor Georg Cantor] begründeten Mengenlehre unter Bezug auf „geordnete Paare“ seine formal strenge und saubere Fassung als spezielle [[Relation]] erhalten hat. <ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 4 und 5].</ref>
==Grundlegende Definitionen==
==Grundlegende Definitionen==
Unter Bezug auf den mit „binäre Relation“ bezeichneten Begriff lässt sich „Funktion“ knapp und elegant definieren, wobei hier statt „binäre Relation“ kurz „[[Relation]]“ gesagt wird: <ref>Auch [Deiser 2010] definiert „Funktion“ als rechtseindeutige Relation.</ref><br /><div id="Abbildung"></div><div id="Operator"></div>
Unter Bezug auf den mit „binäre Relation“ bezeichneten Begriff lässt sich „Funktion“ knapp und elegant definieren, wobei hier statt „binäre Relation“ kurz „[[Relation]]“ gesagt wird: <ref>Auch [Deiser 2010] definiert „Funktion“ als rechtseindeutige Relation.</ref><br /><div id="Abbildung"></div><div id="Operator"></div>
Zeile 14: Zeile 14:
Die Schreib- bzw. Sprechweisen „<math>f</math> ''ist eine Funktion''“ und „<math>f</math> ''ist eine rechtseindeutige Relation''“ sind also gemäß dieser Definition gleichbedeutend. Ihr liegt Folgendes zugrunde:
Die Schreib- bzw. Sprechweisen „<math>f</math> ''ist eine Funktion''“ und „<math>f</math> ''ist eine rechtseindeutige Relation''“ sind also gemäß dieser Definition gleichbedeutend. Ihr liegt Folgendes zugrunde:
[[Datei:Funktion_als_rechtseindeutige_Relation.png|thumb|right|300px||<big>'''Pfeildiagramme''' von zwei Relationen:</big><br />
[[Datei:Funktion_als_rechtseindeutige_Relation.png|thumb|right|300px||<big>'''Pfeildiagramme''' von zwei Relationen:</big><br />
''links:'' die Relation ist nicht rechtseindeutig;<br />
<big>''links:''</big> die Relation ist nicht rechtseindeutig;<br />
<big>''rechts:''</big> die Relation ist rechtseindeutig, sie zeigt eine<br />
<big>''rechts:''</big> die Relation ist rechtseindeutig, sie zeigt eine<br />
<big>„'''Funktion'''“ als rechtseindeutige Relation.</big> <br />
<big>„''Funktion''“ als rechtseindeutige Relation.</big> <br />
Nur die Relation rechts ist auch linkseindeutig.]]
Nur die Relation rechts ist auch linkseindeutig.]]
{| class="wikitable"
{| class="wikitable"
Zeile 28: Zeile 28:
::: aus <math>xR{{y}_{1}}\wedge xR{{y}_{2}}</math> folgt stets  <math>{{y}_{1}}={{y}_{2}}</math>.
::: aus <math>xR{{y}_{1}}\wedge xR{{y}_{2}}</math> folgt stets  <math>{{y}_{1}}={{y}_{2}}</math>.
|| '''Jedem''' Element aus der Ausgangsmenge <math>A</math> '''wird höchstens ein''' Element aus der Zielmenge <math>B</math> [[Zuordnung|zugeordnet]].<br />
|| '''Jedem''' Element aus der Ausgangsmenge <math>A</math> '''wird höchstens ein''' Element aus der Zielmenge <math>B</math> [[Zuordnung|zugeordnet]].<br />
Oder: Die [[Zuordnung]] verläuft von links nach '''rechts''' eindeutig.
Das heißt: Die [[Zuordnung]] verläuft von links nach '''rechts''' eindeutig.
|-
|-
| (2) <math>R</math> ist genau dann '''linkseindeutig''', wenn für alle <math>{{x}_{1}},{{x}_{2}},y</math> gilt:  
| (2) <math>R</math> ist genau dann '''linkseindeutig''', wenn für alle <math>{{x}_{1}},{{x}_{2}},y</math> gilt:  
::: aus <math>{{x}_{1}}Ry\wedge {{x}_{2}}Ry</math> folgt stets  <math>{{x}_{1}}={{x}_{2}}</math>.
::: aus <math>{{x}_{1}}Ry\wedge {{x}_{2}}Ry</math> folgt stets  <math>{{x}_{1}}={{x}_{2}}</math>.
|| '''Jedes''' Element aus der Zielmenge <math>A</math> '''ist höchstens einem''' Element aus der Ausgangsmenge <math>B</math> [[Zuordnung|zugeordnet]].<br />
|| '''Jedes''' Element aus der Zielmenge <math>A</math> '''ist höchstens einem''' Element aus der Ausgangsmenge <math>B</math> [[Zuordnung|zugeordnet]].<br />
Oder: Die ''inverse'' [[Zuordnung]] verläuft von rechts nach '''links''' eindeutig.
Das heißt: Die ''inverse'' [[Zuordnung]] verläuft von rechts nach '''links''' eindeutig.
|-
|-
| (3) <math>R</math> ist genau dann '''injektiv''', wenn <math>R</math> sowohl rechtseindeutig als auch linkseindeutig ist.
| (3) <math>R</math> ist genau dann '''injektiv''', wenn <math>R</math> sowohl rechtseindeutig als auch linkseindeutig ist.
Zeile 50: Zeile 50:
oder: „das <math>y</math> wird dem <math>x</math> zugeordnet“<br />
oder: „das <math>y</math> wird dem <math>x</math> zugeordnet“<br />
oder: „aus <math>x</math> wird <math>y</math>“,<br />
oder: „aus <math>x</math> wird <math>y</math>“,<br />
aber nicht : „<math>x</math> wird zugeordnet <math>y</math>“ (weil dann nicht klar ist, wer wem zugeordnet wird).
aber nicht: „<math>x</math> wird zugeordnet <math>y</math>“ (weil dann nicht klar ist, wer wem zugeordnet wird).
|-
|-
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls <math>x\mapsto y</math> bezüglich der Funktion <math>f</math> gilt, dann ist:: <math>f(x):=y</math> || <math>f(x)</math> heißt dann '''Funktionswert''' von „<math>x</math> bezüglich <math>f</math>, gelesen: „f von x“.<br />
| Es sei <math>x\in A</math> und <math>y\in B</math>. Falls <math>x\mapsto y</math> bezüglich der Funktion <math>f</math> gilt, dann ist:: <math>f(x):=y</math> || <math>f(x)</math> heißt dann '''Funktionswert''' von „<math>x</math> bezüglich <math>f</math>, gelesen: „f von x“.<br />
Zeile 62: Zeile 62:
| Falls <math>{{\operatorname{D}}_{f}}=A</math>, dann wird notiert:: <math>f\,:A\to B</math> || gelesen: „<math>f</math> ist eine Funktion von <math>A</math> '''in''' <math>B</math>“.<br />
| Falls <math>{{\operatorname{D}}_{f}}=A</math>, dann wird notiert:: <math>f\,:A\to B</math> || gelesen: „<math>f</math> ist eine Funktion von <math>A</math> '''in''' <math>B</math>“.<br />
Die Zuordnungspfeile <math>\mapsto</math> und <math>\to</math> sind streng zu unterscheiden, denn z. B. gilt:<br />
Die Zuordnungspfeile <math>\mapsto</math> und <math>\to</math> sind streng zu unterscheiden, denn z. B. gilt:<br />
<math>\{1\}\to \{2,3\}</math> bedeutet: Dem Element <math>1</math> wird das Element <math>2</math> oder <math>3</math> zugeordndet.<br />
<math>\{1\}\to \{2,3\}</math> bedeutet: Dem Element <math>1</math> wird das Element <math>2</math> und das Element <math>3</math> zugeordnet.<br />
<math>\{1\}\mapsto \{2,3\}</math> bedeutet: Der Menge <math>\{1\}</math> wird die Menge <math>\{2,3\}</math> zugeordnet.
<math>\{1\}\mapsto \{2,3\}</math> bedeutet: Der Menge <math>\{1\}</math> wird die Menge <math>\{2,3\}</math> zugeordnet.
|-
|-
Zeile 70: Zeile 70:
| Falls <math>f</math> surjektiv und injektiv ist, dann heißt <math>f</math> '''bijektiv'''. || <math>f</math> ist dann eine '''Bijektion'''.
| Falls <math>f</math> surjektiv und injektiv ist, dann heißt <math>f</math> '''bijektiv'''. || <math>f</math> ist dann eine '''Bijektion'''.
|-
|-
| Eine beliebige '''Bijektion''' einer Menge <math>A</math> '''auf sich selber''' ist eine '''Transformation''' von <math>A</math>. || ''Automorphismen'' (z. B. in Algebra und Geometrie) sind stets strukturerhaltende Transformattonen.
| Eine beliebige '''Bijektion''' einer Menge <math>A</math> '''auf sich selber''' ist eine '''Transformation''' von <math>A</math>. || ''Automorphismen'' (z. B. in Algebra und Geometrie) sind stets strukturerhaltende Transformationen.
|-
|-
| Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen.
| Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen.
Zeile 84: Zeile 84:
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s. o).
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s. o).
* Die symbolische Darstellung „<math>f\,:A\to B</math>“ ist eine Aussage (bzw. Eigenschaft) und bedeutet definitionsgemäß und ist so zu lesen: „<math>f</math> ist eine Funktion von <math>A</math> in <math>B</math>“. Damit ist es sprachlich nicht korrekt, <math>f\,:A\to B</math> eine „Funktion“ zu nennen, sondern korrekt wäre z. B. entweder „die Funktion <math>f</math> von <math>A</math> in <math>B</math>“ oder „die Funktion <math>f</math> mit der Eigenschaft <math>f\,:A\to B</math>“.
* Die symbolische Darstellung „<math>f\,:A\to B</math>“ ist eine Aussage (bzw. Eigenschaft) und bedeutet definitionsgemäß und ist so zu lesen: „<math>f</math> ist eine Funktion von <math>A</math> in <math>B</math>“. Damit ist es sprachlich nicht korrekt, <math>f\,:A\to B</math> eine „Funktion“ zu nennen, sondern korrekt wäre z. B. entweder „die Funktion <math>f</math> von <math>A</math> in <math>B</math>“ oder „die Funktion <math>f</math> mit der Eigenschaft <math>f\,:A\to B</math>“.
* Es ist zu beachten, dass bei Funktionen der mit dem Symbol <math>f(x)</math> bezeichnete „Funktions'''wert'''“ (ganz im Sinne der kulturhistorischen Tradition) '''nicht notwendig ein [[Term]]''' sein muss, so dass man hier besser nicht immer von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bin [[Funktionenplotter|Funktionenplottern]], die ''nur die Darstellung termdefinierter Funktionen'' ermöglichen können.
* Es ist zu beachten, dass bei Funktionen der mit dem Symbol <math>f(x)</math> bezeichnete „Funktions'''wert'''“ (ganz im Sinne der kulturhistorischen Tradition) '''nicht notwendig ein [[Term]]''' sein muss, so dass man hier besser nicht immer von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bei [[Funktionenplotter|Funktionenplottern]], die ''nur die Darstellung termdefinierter Funktionen'' ermöglichen können.
* Offensichtlich kann man nicht termdefinierbare Funktionen mit endlichem Definitionsbereich durch eine Tabelle darstellen. Aber das ist auch bei nicht endlichem Definitionsbereich möglich, wie etwa folgendes Beispiel zeigt: Es sei <math>f(n)</math> für alle natürlichen Zahlen <math>n</math> die <math>n</math>-te Dezimalstelle von <math>\pi</math>, also <math>f(0)=3</math>, <math>f(1)=1</math>, <math>f(2)=4</math> ..., dann lässt sich dies mit einer (gedachten!) unendlichen Tabelle erfassen.
* Offensichtlich kann man jede nicht termdefinierbare Funktion mit endlichem Definitionsbereich durch eine Tabelle darstellen.
* Nur dann, wenn <math>y=f(x)</math> gilt und <math>f(x)</math> für alle betrachteten <math>x</math> ein [[Term]] ist, kann man also „<math>y=f(x)</math>“ eine '''Funktionsgleichung''' nennen.
* Nur dann, wenn <math>y=f(x)</math> gilt und <math>f(x)</math> für alle betrachteten <math>x</math> ein [[Term]] ist, kann man also „<math>y=f(x)</math>“ eine '''Funktionsgleichung''' nennen.


Zeile 92: Zeile 92:
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
===Fazit===
===Fazit===
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs und leiten ueber zu den vielen „[[Funktion: viele Gesichter|vielen Gesichtern von Funktionen]]“. <ref>Vgl. [Herget et. al. 2020].</ref> <br />
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs und leiten über zu den „[[Funktion: viele Gesichter|vielen Gesichtern von Funktionen]]“. <ref>Vgl. [Herget et. al. 2020].</ref> <br />
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
* ''die Funktion'' <math>f</math>
* ''die Funktion'' <math>f</math>
Zeile 101: Zeile 101:
==Mehrstellige Funktionen==
==Mehrstellige Funktionen==
'''Definition''':<br />
'''Definition''':<br />
: Es sei <math>n\in {{\mathbb{N}}^{*}}</math> (also <math>n>0</math>), <math>{{A}_{1}},\ \ldots ,\ {{A}_{n}},B</math> seien nicht leere Mengen, und es sei <math>f\,:{{A}_{1}}\times \ldots \times {{A}_{n}}\to B</math>.<br />
: Es sei <math>n\in {{\mathbb{N}}^{*}}</math> (also <math>n>0</math>), ferner seien <math>{{A}_{1}},\ \ldots ,\ {{A}_{n}},B</math> nicht leere Mengen, und es sei <math>f\,:{{A}_{1}}\times \ldots \times {{A}_{n}}\to B</math>.<br />
: Dann ist <math>f</math> eine '''<math>n</math>-stellige Funktion'''. <br /><br />
: Dann ist <math>f</math> eine '''<math>n</math>-stellige Funktion'''. <br /><br />
* Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>.
* Für die Funktionswerte gilt also <math>f({{x}_{1}},\ldots ,{{x}_{n}})\in B</math>.
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen, was streng genommen nicht korrekt ist, weil ja nicht die Funktion „Veränderliche“ hat, sondern die Funktionswerte sind im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|'''Funktionsterme''']], die aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaut sind: Es liegen dann also ''Funktionsterme in mehreren Veränderlichen'' (bzw.: ''in mehreren Variablen'') vor.
* Mehrstellige Funktionen pflegt man heute wieder wie früher oft „Funktionen mehrerer Veränderlicher“ zu nennen. Das ist streng genommen nicht korrekt, weil ja nicht die Funktion „Veränderliche“ hat; vielmehr sind es die Funktionswerte im Falle [[Funktion: kulturhistorische Aspekte#nicht termdefinierbar|termdefinierter]] Funktionen [[Term|'''Funktionsterme''']], die aus den Variablen <math>{{x}_{1}},\ldots ,{{x}_{n}}</math> aufgebaut sind: Es liegen dann also ''Funktionsterme in mehreren Veränderlichen'' (bzw.: ''in mehreren Variablen'') vor.
* Mit <math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> ist <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''.
* Mit <math>f({{x}_{1}},\ldots ,{{x}_{n}})=:y</math> ist <math>({{x}_{n}},\ldots ,{{x}_{n}},y)=(({{x}_{1}},\ldots ,{{x}_{n}}),y)\in ({{A}_{1}}\times \ldots \times {{A}_{n}})\times B={{A}_{1}}\times \ldots \times {{A}_{n}}\times B</math>, und damit ist jede <math>n</math>-stellige Funktion zugleich eine '''<math>(n+1)</math>-stellige [[Relation]]'''.


Zeile 110: Zeile 110:
* Deiser, Oliver [2010]: ''Einführung in die Mengenlehre''. Berlin / Heidelberg: Springer (3., korrigierte Auflage; 1. Auflage 2000; 2., korrigierte und erheblich erweiterte Auflage 2004).
* Deiser, Oliver [2010]: ''Einführung in die Mengenlehre''. Berlin / Heidelberg: Springer (3., korrigierte Auflage; 1. Auflage 2000; 2., korrigierte und erheblich erweiterte Auflage 2004).
* Felgner, Ulrich [2002]: ''Der Begriff der Funktion.'' In: Felix Hausdorff – Gesammelte Werke Band II, Grundzüge der Mengenlehre. New York / Berlin / Heidelberg: Springer, S. 621–633.
* Felgner, Ulrich [2002]: ''Der Begriff der Funktion.'' In: Felix Hausdorff – Gesammelte Werke Band II, Grundzüge der Mengenlehre. New York / Berlin / Heidelberg: Springer, S. 621–633.
* Herget, Wilfried & Malitte, Eva & Richter, Karin [2000]: ''Funktionen haben viele Gesichter – auch im Unterricht!'' In: Flade, Lothar & Herget, Wilfried (Hrsg.): Mathematik lehren und lernen nach TIMSS – Anregungen für die Sekundarschulen. Berlin: Verlag Volk und Wissen, 2000, 115–124.
* Herget, Wilfried & Malitte, Elvira & Richter, Karin [2000]: ''Funktionen haben viele Gesichter – auch im Unterricht!'' In: Flade, Lothar & Herget, Wilfried (Hrsg.): Mathematik lehren und lernen nach TIMSS – Anregungen für die Sekundarschulen. Berlin: Verlag Volk und Wissen, 2000, 115–124.
* Hischer, Horst [2012]: ''Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung. Struktur – Funktion – Zahl''. Wiesbaden: Springer Spektrum.
* Hischer, Horst [2012]: ''Grundlegende Begriffe der Mathematik: Entstehung und Entwicklung. Struktur – Funktion – Zahl''. Wiesbaden: Springer Spektrum.