2.341
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[gesichtete Version] | [gesichtete Version] |
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung |
||
(7 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt) | |||
Zeile 7: | Zeile 7: | ||
Im deutschen Sprachraum haben sich leider die Bezeichnungen „Dynamisches Geometriesystem“ und „Dynamische Geometriesoftware“ etabliert – allerdings sind beide sprachlich nicht korrekt, denn nicht das Programm ist „dynamisch“, sondern allenfalls die damit realisierte Geometrie. Mit „dynamisch“ ist hierbei allerdings nicht der in der Physik übliche auf Kraft, Masse, Impuls usw. beruhende Aspekt der Bewegung materieller Körper gemeint (''Dynamik'' als entsprechendes Teilgebiet der Mechanik innerhalb der Physik), sondern nur (im Sinne des griechischen Wortursprungs) die „unmittelbare“ Bewegung virtueller geometrischer (Bildschirm-)Objekte aufgrund von spontanen oder algorithmierten oder algorithmierbaren Aktionen des Programmbenutzers. Daher wäre neben „Bewegungsgeometrie“ auch die Bezeichnung „kinematische Geometrie“ (im Sinne der Physik) denkbar (vgl. ''Kinematik'' als kräftefreie Bewegungslehre innerhalb der Mechanik). | Im deutschen Sprachraum haben sich leider die Bezeichnungen „Dynamisches Geometriesystem“ und „Dynamische Geometriesoftware“ etabliert – allerdings sind beide sprachlich nicht korrekt, denn nicht das Programm ist „dynamisch“, sondern allenfalls die damit realisierte Geometrie. Mit „dynamisch“ ist hierbei allerdings nicht der in der Physik übliche auf Kraft, Masse, Impuls usw. beruhende Aspekt der Bewegung materieller Körper gemeint (''Dynamik'' als entsprechendes Teilgebiet der Mechanik innerhalb der Physik), sondern nur (im Sinne des griechischen Wortursprungs) die „unmittelbare“ Bewegung virtueller geometrischer (Bildschirm-)Objekte aufgrund von spontanen oder algorithmierten oder algorithmierbaren Aktionen des Programmbenutzers. Daher wäre neben „Bewegungsgeometrie“ auch die Bezeichnung „kinematische Geometrie“ (im Sinne der Physik) denkbar (vgl. ''Kinematik'' als kräftefreie Bewegungslehre innerhalb der Mechanik). | ||
Für ein ''DGS'' sind vor allem die Aspekte '''Zugmodus''' und '''Ortslinien''' und die Möglichkeit zum '''Entdecken''' typisch: | Für ein ''DGS'' sind vor allem die Aspekte '''Zugmodus''' und '''Ortslinien''' und die Möglichkeit zum '''Entdecken''' typisch: | ||
===Typische Aspekte=== | ===Typische Aspekte=== | ||
====Zugmodus==== | ====Zugmodus==== | ||
Der Zugmodus ermöglicht die Erstellung von „beweglichen“ geometrischen Konstruktionen am Bildschirm, bei denen unabhängige, sog. „freie“ (vom Benutzer gesetzte) Punkte nachträglich (mit der Maus) „gezogen“ und damit verschoben werden können, ohne dass dabei gewisse bei der Erstellung der Konstruktion festgelegte Zusammenhänge (nämlich: geometrische „Invarianten“) zwischen den geometrischen Objekten verloren gehen.<br> | Der Zugmodus ermöglicht die Erstellung von „beweglichen“ geometrischen Konstruktionen am Bildschirm, bei denen unabhängige, sog. „freie“ (vom Benutzer gesetzte) Punkte nachträglich (mit der Maus) „gezogen“ und damit verschoben werden können, ohne dass dabei gewisse bei der Erstellung der Konstruktion festgelegte Zusammenhänge (nämlich: geometrische „Invarianten“) zwischen den geometrischen Objekten verloren gehen.<br> | ||
''' | '''Beispiel''': Erhalt der Parallelität. | ||
====Ortslinien==== | ====Ortslinien==== | ||
Aufgrund der Beweglichkeit gewisser abhängiger „Basispunkte“ (die aber noch einen Freiheitsgrad der Bewegung besitzen) ist es möglich, deren ''Ortslinien'' zu erzeugen.<br> | Aufgrund der Beweglichkeit gewisser abhängiger „Basispunkte“ (die aber noch einen Freiheitsgrad der Bewegung besitzen) ist es möglich, deren ''Ortslinien'' zu erzeugen.<br> | ||
Zeile 18: | Zeile 19: | ||
Bei „guten“ DGS sind dann auch diese Ortslinien insofern dynamisch, als dass sie sich bei Veränderung der zugrunde liegenden freien Punkte (bei der Ellipse: den Brennpunkten) mit verändern. | Bei „guten“ DGS sind dann auch diese Ortslinien insofern dynamisch, als dass sie sich bei Veränderung der zugrunde liegenden freien Punkte (bei der Ellipse: den Brennpunkten) mit verändern. | ||
====Entdecken==== | ====Entdecken==== | ||
Mit Hilfe eines DGS können zwar durch interaktive Parameter-Variation geometrische Sachverhalte ''entdeckt'', ''visualisiert'' oder ''verifiziert'' werden, sie können damit ''jedoch nicht bewiesen'' werden. Insofern ähnelt die Verwendung eines DGS dem Experimentieren in den Naturwissenschaften, denn auch dort können Vermutungen bzw. Theorien mittels eines Experiments nicht bewiesen, sondern nur bestätigt oder widerlegt werden | Mit Hilfe eines DGS können zwar durch interaktive Parameter-Variation geometrische Sachverhalte ''entdeckt'', ''visualisiert'' oder ''verifiziert'' werden, sie können damit ''jedoch nicht bewiesen'' werden. Insofern ähnelt die Verwendung eines DGS dem Experimentieren in den Naturwissenschaften, denn auch dort können Vermutungen bzw. Theorien mittels eines Experiments nicht bewiesen, sondern nur bestätigt oder widerlegt werden – und ebenso können bekanntlich auch in den Naturwissenschaften Experimente zu neuen Entdeckungen führen. | ||
===Weitere Aspekte=== | ===Weitere Aspekte=== | ||
====Makros==== | ====Makros==== | ||
Zeile 89: | Zeile 90: | ||
* [[Z.u.L.]] | * [[Z.u.L.]] | ||
==== Von historischer Bedeutung ==== | ==== Von historischer Bedeutung ==== | ||
Diese Programme sind vermutlich nicht mehr erhältlich, oder es fehlt noch eine konkrete Beschreibung. | Diese von Gerhard Holland entwickelten Programme sind vermutlich nicht mehr erhältlich, oder es fehlt noch eine konkrete Beschreibung. | ||
* [[Geolog]] | * [[Geolog]] | ||
* [[Geoexpert]] | |||
==== Korrektheit der Angabe noch zu klären ==== | ==== Korrektheit der Angabe noch zu klären ==== | ||
Folgende Namen wurden leider ohne Link eingetragen. | Folgende Namen wurden leider ohne Link eingetragen. | ||
Zeile 119: | Zeile 122: | ||
[[Kategorie:Dynamische Geometriesysteme|!]] | [[Kategorie:Dynamische Geometriesysteme|!]] | ||
[[Kategorie:Computer im Unterricht]] |