Baustelle:Funktion: Unterschied zwischen den Versionen

K
 
(19 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 21: Zeile 21:
:• Formel
:• Formel
:• ...?
:• ...?
Legt man diese (offen gehalteneI Liste zugrunde, so begegnet uns der Funktionsbegriff erstmalig in einigen numerischen Tabellen bei den Babyloniern im 19. Jh. v. Chr., und es ergibt sich folgende grobe Zeittafel:<br />
Legt man diese (offen gehalteneI Liste zugrunde, so begegnet uns der Funktionsbegriff bereits in einigen numerischen Tabellen bei den Babyloniern im 19. Jh. v. Chr., und es ergibt sich folgende grobe Zeittafel:<br />


===Zeittafel===
===Zeittafel===
'''Stationen der kulturhistorischen Entwicklung des Funktionsbegriffs''' <ref>Vgl. die Zeittafel in [Hischer 2012, 131] und dort die ausführliche Darstellung im Anschluss daran.</ref>
* '''Stationen der kulturhistorischen Entwicklung des Funktionsbegriffs''' <ref>Vgl. die Zeittafel in [Hischer 2012, 131] und dort die ausführliche Darstellung im Anschluss daran.</ref>
{| class="wikitable"
{| class="wikitable"
|-
|-
Zeile 58: Zeile 58:


===Erörterung===
===Erörterung===
Während im 18. Jh. für '''Euler''' Funktionen noch entweder „analytische Ausdrücke“ (also „Terme“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns darüber hinaus Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) auch als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen von Fourier bei ihm und Dirichlet zu einem „termfreien“ Funktionsbegriff führte, bei dem die Funktionswerte keinem ''Bildungsgesetz'' mehr folgen (müssen). Der Grundlagenforscher und Mathematikhistoriker Ulrich Felgner schreibt hierzu: <ref>Felgner 2002, 624]</ref>  
Während im 18. Jh. für '''Euler''' Funktionen noch entweder „analytische Ausdrücke“ (also „Terme“ im heutigen Verständnis) oder „freihändig gezeichnete Kurven“ waren, begegnen uns darüber hinaus Funktionen im selben Jahrhundert (aus unserer heutigen Sicht) auch als graphisch oder tabellarisch dargestellte empirische Zusammenhänge, was im 19. Jh. über empirische Untersuchungen zunächst von '''Fourier''' und dann von seinem Schüler '''Dirichlet''' zu einem „termfreien“ Funktionsbegriff führte, bei dem die Funktionswerte keinem ''Bildungsgesetz'' mehr folgen (müssen). Der Grundlagenforscher und Mathematikhistoriker Ulrich Felgner schreibt hierzu: <ref>Felgner 2002, 624]</ref>  
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.
:: Funktionen sind [...] bei Fourier und Dirichlet dem Begriffe nach eindeutige Zuordnungen. Im Begriff der Funktion ist die Definierbarkeit durch einen analytischen Ausdruck nicht eingeschlossen. Dieser Funktionsbegriff wird oft nur mit dem Namen Dirichlets in Verbindung gebracht, obwohl doch Fourier der eigentliche Urheber ist.
:: [...] Funktionen im Sinne von Fourier und Dirichlet müssen weder differenzierbar noch stetig sein.
:: [...] Funktionen im Sinne von Fourier und Dirichlet müssen weder differenzierbar noch stetig sein.
 
<div id="nicht termdefinierbar"></div>Mit dem „analytischen Ausdruck“ ist hier ein arithmetischer [[Term]] gemeint. Es ist zu beachten, dass damit bei '''Fourier''' und '''Dirichlet''' Funktionen ertsmalig nicht mehr (wie zuvor noch bei Euler) einem „Bildungsgesetz“ gehorchen müssen, weil sie ''nicht mehr termdefinierbar'' sein müssen (was für empirische Funktionen der „Normalfall“ ist).<br />
<div id="nicht termdefinierbar"></div>Es ist zu beachten, dass damit bei '''Fourier''' und '''Dirichlet''' Funktionen ertsmalig nicht mehr (wie bei Euler) einem „Bildungsgesetz“ gehorchen müssen, weil sie ''nicht mehr termdefinierbar'' sein müssen (was für empirische Funktionen der „Normalfall“ ist).<br />
Auch Richard '''Dedekind''' fasst Funktionen als eindeutige Zuordnungen auf, verwendet aber die Bezeichnung „Abbildung“, wobei er noch von einem „Gesetz“ spricht. <ref>Vgl. [Hischer 2012, 153]</ref><br />
Auch Richard '''Dedekind''' fasst Funktionen als eindeutige Zuordnungen auf, verwendet aber die Bezeichnung „Abbildung“, wobei er noch von einem „Gesetz“ spricht. <ref>Vgl. [Hischer 2012, 153]</ref><br />
Paul '''Du Bois-Reymond''' erfasst den Aspekt der eindeutigen Zuordnung durch die Auffassung von „Funktion als Tabelle“ (wie bei den Babyloniern), was Felgner wie folgt kommentiert: <ref>[Felgner 2002, 626]; zitiert bei [Hischer 2012, 152] in Verbindung mit dem Originaltext von Du Bois-Reymond.</ref>
Paul '''Du Bois-Reymond''' erfasst den Aspekt der eindeutigen Zuordnung durch die Auffassung von „Funktion als Tabelle“ (wie bei den Babyloniern), was Felgner wie folgt kommentiert: <ref>[Felgner 2002, 626]; zitiert bei [Hischer 2012, 152] in Verbindung mit dem Originaltext von Du Bois-Reymond.</ref>
:: Auch diese Beschreibung des Funktionsbegriffes ist recht allgemein. Eine Gesetzmäßigkeit muss einer Tabelle nicht unbedingt zugrunde liegen. In die Spalte der Funktionswerte kann man ja nach Belieben Werte hineinschreiben.
:: Auch diese Beschreibung des Funktionsbegriffes ist recht allgemein. Eine Gesetzmäßigkeit muss einer Tabelle nicht unbedingt zugrunde liegen. In die Spalte der Funktionswerte kann man ja nach Belieben Werte hineinschreiben.
Daran anschließend versuchen '''Peirce''', '''Schröder''' und '''Peano''' erstmalig, ''Funktionen als Relationen'' und ''Relationen als Mengen geordneter Paare'' zu beschreiben, wobei sie „geordnetes Paar“ noch undefiniert verwenden.<br />
Daran anschließend versuchen '''Peirce''', '''Schröder''' und '''Peano''' erstmalig, ''Funktionen als Relationen'' und ''Relationen als Mengen geordneter Paare'' zu beschreiben, wobei sie „geordnetes Paar“ noch undefiniert verwenden.<br />
Felix '''Hausdorff''' definiert 1914 erstmalig „geordnetes Paar“ auf mengentheoretischer Grundlage (wenn auch noch nicht so elegant wie 1921 [http://de.wikipedia.org/wiki/Kazimierz_Kuratowski Kazimierz '''Kuratowski''']) und darauf aufbauend „Funktion“ als das, was wir heute ''„binäre, rechtseindeutige Relation“'' nennen: Damit wurde erstmalig der moderne Funktionsbegriff formal sauber definiert, basierend auf den Vorarbeiten vor allem der Mathematiker des 19. Jahrhunderts, wobei die vorherige Betrachtung und Einbeziehung empirischer Funktionen die Abkehr von der Forderung nach einem „Bildungsgesetz“ erzwungen hatte.
Felix '''Hausdorff''' definiert 1914 erstmalig „geordnetes Paar“ auf mengentheoretischer Grundlage (wenn auch noch nicht so elegant wie 1921 [http://de.wikipedia.org/wiki/Kazimierz_Kuratowski Kazimierz '''Kuratowski''']) und darauf aufbauend „Funktion“ als das, was wir heute ''„binäre, rechtseindeutige Relation“'' nennen: Damit wurde erstmalig der moderne Funktionsbegriff formal sauber auf mengentheoretischer Grundlage definiert, basierend auf den Vorarbeiten vor allem der Mathematiker des 19. Jahrhunderts, wobei die vorherige Betrachtung und Einbeziehung empirischer Funktionen die Abkehr von der Forderung nach einem „Bildungsgesetz“ geradezu erzwungen hatte.


==Mengentheoretische Betrachtungen <small><small><ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 5].</ref></small></small>==
==Mengentheoretische Betrachtungen <small><small><ref>Vgl. hierzu die ausführlichen Betrachtungen in [Hischer 2012, Kapitel 5].</ref></small></small>==
===Grundlegende Definitionen===
===Grundlegende Definitionen===
Unter Bezug auf den mit „binäre [[Relation]]“ bezeichneten Begriff lässt sich „Funktion“ knapp und elegant definieren, wobei hier statt „binäre [[Relation]]“ kurz „[[Relation]]“ gesagt wird: <ref>Auch [Deiser 2010] definiert „Funktion“ als rechtseindeutige Relation.</ref><br />
Unter Bezug auf den mit „binäre Relation“ bezeichneten Begriff lässt sich „Funktion“ knapp und elegant definieren, wobei hier statt „binäre Relation“ kurz „[[Relation]]“ gesagt wird: <ref>Auch [Deiser 2010] definiert „Funktion“ als rechtseindeutige Relation.</ref><br />
{| class="wikitable"
{| class="wikitable"
|-
|-
Zeile 107: Zeile 106:
Gleichbedeutend mit ''„injektiv“'' ist „'''eineindeutig'''“.
Gleichbedeutend mit ''„injektiv“'' ist „'''eineindeutig'''“.
|}
|}
===Weitergehende Definitionen und Bezeichnungen===
===Weitergehende Definitionen und Bezeichnungen===
{| class="wikitable"
{| class="wikitable"
Zeile 122: Zeile 122:
<math>f(x)</math> muss nicht als [[Term]] darstellbar sein. <ref>Vgl. die Anmerkungen [[Funktion#nicht termdefinierbar|zur kulturhistorischen Genese]] des Funktionsbegriffs bezüglich Fourier und Dirichlet.</ref>
<math>f(x)</math> muss nicht als [[Term]] darstellbar sein. <ref>Vgl. die Anmerkungen [[Funktion#nicht termdefinierbar|zur kulturhistorischen Genese]] des Funktionsbegriffs bezüglich Fourier und Dirichlet.</ref>
|-
|-
| <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> || '''Definitionsmenge''' von <math>f</math>, auch „Definitionsbereich“, es ist <math>{{\operatorname{D}}_{f}}\subseteq A</math>.
| <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> || '''Definitionsmenge''' von <math>f</math>, auch „Definitionsbereich“, es ist <math>{{\operatorname{D}}_{f}}\subseteq A</math>.<br>
<math>x</math> ist '''Argument''' von <math>f\ \ :\Leftrightarrow \ \ x\in {{\operatorname{D}}_{f}}</math>.
|-
|-
| <math>{{\operatorname{W}}_{f}}:=\{y\in B|</math> es gibt ein <math>x\in A</math> mit <math>y=f(x)\}</math> || '''Wertemenge''' von <math>f</math>, auch „Wertebereich“, es ist <math>{{\operatorname{W}}_{f}}=\{f(x)|x\in A\}\subseteq B</math>.
| <math>{{\operatorname{W}}_{f}}:=\{y\in B|</math> es gibt ein <math>x\in A</math> mit <math>y=f(x)\}</math> || '''Wertemenge''' von <math>f</math>, auch „Wertebereich“, es ist <math>{{\operatorname{W}}_{f}}=\{f(x)|x\in A\}\subseteq B</math>.
Zeile 140: Zeile 141:
| Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen.
| Eine beliebige Transformation einer '''endlichen''' Menge <math>A</math> ist eine '''Permutation''' . || ''Umordnungen'' der Elemente einer endlichen Menge sind stets Permutationen.
|-
|-
| <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>  || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph''').
| <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math>  || <math>{{\operatorname{G}}_{f}}</math> heißt '''Graph''' von <math>f</math> (oder einfach '''Funktionsgraph'''). Es gilt <math>{{\operatorname{G}}_{f}}\subseteq A\times B</math>.
|}
|}


Zeile 146: Zeile 147:
====Funktionsdefinition====
====Funktionsdefinition====
* Ein wesentlicher Aspekt beim Funktionsbegriff ist die eindeutige Zuordnung, die mit „rechtseindeutig“ erfasst werden kann, ohne schon <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> mit voraussetzen zu müssen.
* Ein wesentlicher Aspekt beim Funktionsbegriff ist die eindeutige Zuordnung, die mit „rechtseindeutig“ erfasst werden kann, ohne schon <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> mit voraussetzen zu müssen.
* Wenn die Ausgangsmenge mit dem Definitionsbereich übereinstimmt, also <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math>, wird ''jedem Elemente der Ausgangsmenge genau ein Element der Zielmenge'' zugeordnet, so dass also <math>f\,:A\to B</math> gilt. Es bietet sich an, mit dieser engeren Sichtweise zu beginnen (und ggf. dabei zu bleiben).
* Wenn die Ausgangsmenge mit dem Definitionsbereich übereinstimmt, wenn also <math>{{\operatorname{D}}_{f}}:=\{x\in A|</math> es gibt ein <math>y\in B</math> mit <math>y=f(x)\}</math> gilt, wird ''jedem Element der Ausgangsmenge genau ein Element der Zielmenge'' zugeordnet, so dass also <math>f\,:A\to B</math> gilt. Es bietet sich für den Mathematikunterricht an, mit dieser engeren Sichtweise zu beginnen (und ggf. dabei zu bleiben).
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s. o).
* Der Aspekt der eindeutigen Zuordnung liegt in zweispaltigen Tabellen automatisch vor, wenn sich in der „Eingangspalte“ (links) kein Element wiederholt. Damit kann eine „Funktion“ alternativ von Anbeginn an auch mit einer solchen Tabelle identifiziert werden, dieses in Übereinstimmung mit der Auffassung der Numeriker und ganz in der kulturhistorischen Tradition der Mathematik von den Babyloniern bis Du Bois-Reymond (s. o).
* Es ist zu beachten, dass bei Funktionen <math>f(x)</math> (ganz im Sinne der kulturhistorischen Tradition) nicht notwendig ein [[Term]] sein muss, so dann man hier also auch nicht von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bin [[Funktionenplotter|Funktionenplottern]], die nur die Darstellung termdefinierter Funktionen ermöglichen können.
* Die symbolische Darstellung „<math>f\,:A\to B</math>“ ist eine Aussage (bzw. Eigenschaft) und bedeutet definitionsgemäß und ist so zu lesen: „<math>f</math> ist eine Funktion von <math>A</math> in <math>B</math>“. Damit ist es sprachlich nicht korrekt, „die Funktion <math>f\,:A\to B</math>“ zu schreiben, sondern korrekt wäre z. B. entweder „die Funktion <math>f</math> von <math>A</math> in <math>B</math>“ oder „die Funktion <math>f</math> mit der Eigenschaft <math>f\,:A\to B</math>“.
* Offensichtlich kann man nicht termdefinierbare Funktionen mit endlichem Definitionsbereich durch eine Tabelle darstellen. Aber das ist auch bei nicht endlichem Definitionsbereich möglich, wie etwa folgendes Beispiel zeigt: Es sei <math>f(n)</math> für alle natürlichen Zahlen <math>n</math> die <math>n</math>-te Dezimalstelle von <math>pi</math>, also <math>f(0)=3</math>, <math>f(1)=1</math>, <math>f(2)=4</math> ..., dann lässt sich dies mit einer unendlichen Tabelle erfassen.  
* Es ist zu beachten, dass bei Funktionen das Symbol <math>f(x)</math> (ganz im Sinne der kulturhistorischen Tradition) nicht notwendig ein [[Term]] sein muss, so dass man hier besser nicht immer von einem „Funktionsterm“ sprechen sollte. Ganz anders ist die Situation bin [[Funktionenplotter|Funktionenplottern]], die ''nur die Darstellung termdefinierter Funktionen'' ermöglichen können.
* Wenn nun <math>y=f(x)</math> gilt und <math>f(x)</math> für alle betrachteten <math>x</math> ein [[Term]] ist, so nennt man dies eine '''Funktionsgleichung'''.
* Offensichtlich kann man nicht termdefinierbare Funktionen mit endlichem Definitionsbereich durch eine Tabelle darstellen. Aber das ist auch bei nicht endlichem Definitionsbereich möglich, wie etwa folgendes Beispiel zeigt: Es sei <math>f(n)</math> für alle natürlichen Zahlen <math>n</math> die <math>n</math>-te Dezimalstelle von <math>\pi</math>, also <math>f(0)=3</math>, <math>f(1)=1</math>, <math>f(2)=4</math> ..., dann lässt sich dies mit einer unendlichen Tabelle erfassen.  
* Nur dann, wenn <math>y=f(x)</math> gilt und <math>f(x)</math> für alle betrachteten <math>x</math> ein [[Term]] ist, kann man also „<math>y=f(x)</math>“ eine '''Funktionsgleichung''' nennen.


====Funktionsgraph====
====Funktionsgraph====
* Die übliche o. g. Definition des Funktionsgraphen gemäß <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> resultiert aus dem Wunsch der Darstellung der Wertepaare <math>(x,f(x))</math> durch Punkte in einem Koordinatensystem, wobei diese Wertepaare <math>(x,f(x))</math> nicht notwendig numerischer Art sein müssen. Wenn nun aber eine Funktion formal streng als spezielle Relation definiert wird und eine Relation ja gerade eine Menge geordneter Paare ist, so erhalten wir: <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math>
* Die übliche o. g. Definition des Funktionsgraphen gemäß <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> resultiert aus dem Wunsch der Darstellung der Wertepaare <math>(x,f(x))</math> durch ''Punkte in einem Koordinatensystem'', wobei diese Wertepaare <math>(x,f(x))</math> nicht notwendig numerischer Art sein müssen. Wenn nun aber eine Funktion formal streng als spezielle Relation definiert wird und eine Relation ja gerade eine Menge geordneter Paare ist, so erhalten wir <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math>.
* Konsequenz: Es gibt keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man diesen so wie oben definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' bezeichnen kann. <ref>Vgl. den ersten Abschnitt.</ref> Auch der von einem [[Funktionenplotter]] erzeugte Funktionsplot ist damit eine Funktion.<br />
* Konsequenz: Es gibt keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' bezeichnen kann. <ref>Vgl. den ersten Abschnitt.</ref> Auch der von einem [[Funktionenplotter]] erzeugte Funktionsplot ist damit eine Funktion.<br />
Das leitet ueber zu den vielen Gesichtern von Funktionen:
Das führt zu einer durchaus erfreulichen Weite des mit „Funktion“ bezeichneten Begriffs leitet ueber zu den vielen „Gesichtern von Funktionen“. Zugleich ist anzumerken, dass die mengentheoretische Auffassung von „Funktion als rechtseindeutiger Relation“ beweistechnisch gute Möglichkeiten eröffnet.
 
== Funktionen haben viele Gesichter ==
== Funktionen haben viele Gesichter ==
===Grundsätzliches===
===Grundsätzliches===
Die grundlegende mengentheoretische Definition von „Funktion als rechtseindeutiger Relation“ enthält bereits das Wesentliche und wird durch die Erweiterung über die Einbeziehung der Definitionsmenge und der Zielmenge gemäß <math>f\,:A\to B</math> und schließlich auch der Wertemenge umfassend verwendbar, so dass uns unter dieser Sichtweise Funktionen mit unterschiedlichen „Gesichtern“ begegnen können. Das sei nachfolgend durch einige Beispiele verdeutlicht.


===Beispiele===
===Beispiele===
====...====
====Funktionsterm als Funktion====
====...====
Ein beliebiger gemäß Definition eines arithmetischen [[Term|Terms]] gebildeter ''Funktionsterm'' <math>f(x)</math> ordnet jeder reellen oder komplexen Zahl <math>x</math> genau einen Wert zu, nämlich <math>f(x)</math>. Die Menge aller solcher geordneten Paare <math>(x,f(x))</math> ist damit rechtseindeutig, und daher ist bereits durch den Funktionsterm <math>f(x)</math> eine ''Funktion'' gegeben, was dazu führt, diesen Funktionsterm <math>f(x)</math> mit der Funktion <math>f</math> zwar nicht formal, aber inhaltlich im Wesentlichen identifizieren zu können. Obwohl also „eigentlich“ erst <math>f</math> die Funktion ist, steht bereits der Funktionsterm <math>f(x)</math> gleichermaßen für diese Funktion.
 
====Funktionsgraph als Funktion====
====Funktionsgraph als Funktion====
Ist <math>f\,:A\to B</math>, so ist der zugehörige Funktionsgraph durch <math>{{\operatorname{G}}_{f}}=\{(x,f(x))|x\in A\}\subseteq A\times B</math> gegeben, und es wurde bereits festgestellt, dass <math>f=\{(x,f(x))|x\in A\}={{\operatorname{G}}_{f}}</math> gilt, also kurz <math>f={{\operatorname{G}}_{f}}</math>. Interpretiert man das in einem (nicht notwendig numerischen) kartesischen Koordinatensystem als Darstellung von mit <math>(x,f(x))</math> bezeichneten „Punkten“, so wird auf diese Weise jedem <math>x\in A</math> genau ein<math>f(x)\in B</math> zugeordnet, womit also der Funktionsgraph auch in dieser Sichtweise bereits eine Funktion '''ist'''.
====Funktionsplot als Funktion====
====Funktionsplot als Funktion====
Siehe hierzu die Erläuterungen unter [[Funktionenplotter]].
====Digitalisierung und Diskretisierung als Funktionen====
====Digitalisierung und Diskretisierung als Funktionen====
(folgt)
====Hörbare Funktionen====
====Hörbare Funktionen====
(folgt)
====Sichtbare Funktionen====
====Sichtbare Funktionen====
(folgt)