Vorstellungen von 0,99999...: Unterschied zwischen den Versionen

K
[unmarkierte Version][unmarkierte Version]
KKeine Bearbeitungszusammenfassung
Zeile 36: Zeile 36:
== Schülervorstellungen zu (0,9 Periode 9) ==
== Schülervorstellungen zu (0,9 Periode 9) ==


In der Studie "Mathematik, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)"<ref> Bauer, Ludwig: "Mathematik, Intuition, Formalismen: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)", Springer Verlag, Onlinepublikation vom 05.01.2011 </ref> untersuchte Ludwig Bauer die Erwartungen von Schülerinnen und Schülern (SuS) gegenüber der natürlichen Zahl (0,9 Periode 9). Dabei ergab sich insgesamt, dass 70 % der SuS die Meinung (0,9 Periode 9) < 1 vertreten, lediglich 30 % entschieden sich für (0,9 Periode 9) = 1. Hieraus kann schließt er, dass der Mathematikunterricht in den untersuchten Klassen nicht verhindern konnte, dass die SuS mit großer Mehrheit für (0,9 Periode 9) < 1 stimmten <ref> Bauer, Ludwig: "Mathematik, Intuition, Formalismen: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)", Springer Verlag, Onlinepublikation vom 05.01.2011 </ref>. Außerdem ist interessant, dass (0,9 Periode 9) < 1 in der befragten Klassenstufe 12 mit 91 % die stärkste Zustimmung fand. Anscheinend führte sogar die bereits gelehrte [[Infinitesimalrechnung]], welche die intensive Beschäftigung mit Grenzwerten einschließt zu einer Verstärkung der Ablehnung.  
In der Studie "Mathematik, Intuition, Formalisierung: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)"<ref> [[Ludwig Bauer|Bauer, Ludwig]]: "Mathematik, Intuition, Formalismen: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)", Springer Verlag, Onlinepublikation vom 05.01.2011 </ref> untersuchte [[Ludwig Bauer]] die Erwartungen von Schülerinnen und Schülern (SuS) gegenüber der natürlichen Zahl (0,9 Periode 9). Dabei ergab sich insgesamt, dass 70 % der SuS die Meinung (0,9 Periode 9) < 1 vertreten, lediglich 30 % entschieden sich für (0,9 Periode 9) = 1. Hieraus kann schließt er, dass der Mathematikunterricht in den untersuchten Klassen nicht verhindern konnte, dass die SuS mit großer Mehrheit für (0,9 Periode 9) < 1 stimmten <ref> Bauer, Ludwig: "Mathematik, Intuition, Formalismen: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)", Springer Verlag, Onlinepublikation vom 05.01.2011 </ref>. Außerdem ist interessant, dass (0,9 Periode 9) < 1 in der befragten Klassenstufe 12 mit 91 % die stärkste Zustimmung fand. Anscheinend führte sogar die bereits gelehrte [[Infinitesimalrechnung]], welche die intensive Beschäftigung mit Grenzwerten einschließt zu einer Verstärkung der Ablehnung.  


'''Schülerargumente für (0,9 Periode 9) < 1''' <ref> Bauer, Ludwig: "Mathematik, Intuition, Formalismen: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)", Springer Verlag, Onlinepublikation vom 05.01.2011 S.89 f.</ref>
'''Schülerargumente für (0,9 Periode 9) < 1''' <ref> Bauer, Ludwig: "Mathematik, Intuition, Formalismen: eine Untersuchung von Schülerinnen- und Schülervorstellungen zu (0,9 Periode 9)", Springer Verlag, Onlinepublikation vom 05.01.2011 S.89 f.</ref>