50
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[unmarkierte Version] | [unmarkierte Version] |
KKeine Bearbeitungszusammenfassung |
KKeine Bearbeitungszusammenfassung |
||
Zeile 26: | Zeile 26: | ||
<br /> II (0,9 Periode 9) = 0,999.999.999.999... | <br /> II (0,9 Periode 9) = 0,999.999.999.999... | ||
<br /> Mit I+II folgt ε + (0,9 Periode 9) = 1,000.000.000.999 '''>''' 1, was einen Widerspruch zur Annahme bildet. | <br /> Mit I+II folgt ε + (0,9 Periode 9) = 1,000.000.000.999 '''>''' 1, was einen Widerspruch zur Annahme bildet. | ||
<br /> Führt man nun diesen Beweis mit ε = 10<sup>-k</sup> mit k aus den natürlichen Zahlen, erhält man einen Widerspruch zur Annahme für alle k aus den natürlichen Zahlen. Somit war die Annahme falsch. Da (0,9 Periode 9) > 1 ausgeschlossen werden kann, stellt man fest, dass (0.9 Periode 9) = 1 ist. Es gibt also kein Abstand ε zwischen 0,9 Periode 9) und 1, egal wie klein er gewählt wird. | <br /> Führt man nun diesen Beweis mit ε = 10<sup>-k</sup> mit k aus den natürlichen Zahlen, erhält man einen Widerspruch zur Annahme für alle k aus den natürlichen Zahlen. Somit war die Annahme falsch. Da (0,9 Periode 9) > 1 ausgeschlossen werden kann, stellt man fest, dass (0.9 Periode 9) = 1 ist. Es gibt also kein Abstand ε zwischen (0,9 Periode 9) und 1, egal wie klein er gewählt wird. | ||
'''Beweise mit unendlichen geometrischen Reihen''' <ref> Danckwerts, Rainer; Vogel, Danckwart: "Analysis verständlich unterrichten" Spektrum Akademischer Verlag, 1. Auflage, Berlin Heidelberg 2006</ref> | '''Beweise mit unendlichen geometrischen Reihen''' <ref> Danckwerts, Rainer; Vogel, Danckwart: "Analysis verständlich unterrichten" Spektrum Akademischer Verlag, 1. Auflage, Berlin Heidelberg 2006</ref> |
Bearbeitungen