Kristina Reiss: Unterschied zwischen den Versionen

[unmarkierte Version][unmarkierte Version]
Zeile 54: Zeile 54:
*Köller, O., Reiss, K., Stanat, P. &Pant, H.A. (2012). Diagnostik Standard-basierter mathematischer Kompetenzen im Primarbereich: Ein Überblick. Psychologie in Erziehung und Unterricht, 59, 177-190.
*Köller, O., Reiss, K., Stanat, P. &Pant, H.A. (2012). Diagnostik Standard-basierter mathematischer Kompetenzen im Primarbereich: Ein Überblick. Psychologie in Erziehung und Unterricht, 59, 177-190.
*Deiser, O., Reiss, K. & Heinze, A. (2012).Elementar mathematik vom höheren Standpunkt: Warum ist 0,9= 1?In W. Blum, R. Borromeo Ferri & K. Maaß (Hrsg.), Mathematikunterricht im Kontext von Realität, Kultur und Lehrerprofessionalität. Festschrift für Gabriele Kaiser (S. 249-264). Wiesbaden: Springer Spektrum.
*Deiser, O., Reiss, K. & Heinze, A. (2012).Elementar mathematik vom höheren Standpunkt: Warum ist 0,9= 1?In W. Blum, R. Borromeo Ferri & K. Maaß (Hrsg.), Mathematikunterricht im Kontext von Realität, Kultur und Lehrerprofessionalität. Festschrift für Gabriele Kaiser (S. 249-264). Wiesbaden: Springer Spektrum.
*Lichtenfeld,S., Pekrun, R., Murayama, K., Stupinsky, R., & Reiss, K. (2012). Measuring students'emotions in the early years: The achievement emotions questionnaire-elementary school.Learning and Individual Differences, 21, 190-201.
*Lichtenfeld,S., Pekrun, R., Murayama, K., Stupinsky, R., & Reiss, K. (2012). Measuring students'emotions in the early years: The achievement emotions questionnaire-elementary school. Learning and Individual Differences, 21, 190-201.
*Heinze,A., Ufer, S., Rach, S. & Reiss, K. (2012). The student perspective on dealing with errors in mathematics class. In E. Wuttke & J. Seyfried(Eds.), Learning from errors (pp. 65-79). Opladen: Barbara Budrich.
*Heinze,A., Ufer, S., Rach, S. & Reiss, K. (2012). The student perspective on dealing with errors in mathematics class. In E. Wuttke & J. Seyfried(Eds.), Learning from errors (pp. 65-79). Opladen: Barbara Budrich.
*Reiss, K., Pekrun, R., Dresler, T.,Obersteiner, A. & Fallgatter, A. J. (2011). Brain-Math: Eine neurophysiologische Untersuchung mathematik relevanter Hirnfunktionen bei Schulkindern: Einflüsse von Alter, Gefühlszustand und Präsentationsformat. In A. Heine &A. M. Jacobs (Hrsg.), Lehr-Lern-Forschung unter neurowissenschaftlicher Perspektive. (S. 41-55). Münster: Waxmann.
*Reiss, K., Pekrun, R., Dresler, T.,Obersteiner, A. & Fallgatter, A. J. (2011). Brain-Math: Eine neurophysiologische Untersuchung mathematik relevanter Hirnfunktionen bei Schulkindern: Einflüsse von Alter, Gefühlszustand und Präsentationsformat. In A. Heine &A. M. Jacobs (Hrsg.), Lehr-Lern-Forschung unter neurowissenschaftlicher Perspektive. (S. 41-55). Münster: Waxmann.
*Prenzel, M., Reiss, K. & Seidel, T.(2011). Lehrerbildung an der TUM School of Education. Erziehungswissenschaft,22(43), 47-56.
*Prenzel, M., Reiss, K. & Seidel, T.(2011). Lehrerbildung an der TUM School of Education. Erziehungswissenschaft,22(43), 47-56.
*Heinze, A., Herwartz-Emden, L., Braun, C.& Reiss, K. (2011). Die Rolle von Kenntnissen der Unterrichtssprache beim Mathematiklernen. Ergebnisse einer quantitativen Längsschnittstudie in der Grundschule.In S. Prediger & E. Özdil (Hrsg.) Mathematiklernen unter Bedingungen der Mehrsprachigkeit - Standund Perspektiven der Forschung und Entwicklung in Deutschland (S. 11-33). Münster: Waxmann.
*Heinze, A., Herwartz-Emden, L., Braun, C.& Reiss, K. (2011). Die Rolle von Kenntnissen der Unterrichtssprache beim Mathematiklernen. Ergebnisse einer quantitativen Längsschnittstudie in der Grundschule.In S. Prediger & E. Özdil (Hrsg.) Mathematiklernen unter Bedingungen der Mehrsprachigkeit - Stand und Perspektiven der Forschung und Entwicklung in Deutschland (S. 11-33). Münster: Waxmann.
*Obersteiner, A., Reiss, K. & Martel, A. (2011).Offene Aufgaben in Schulbüchern und ihr Einsatz im Mathematikunterricht. In E. Matthes & S. Schütze (Hrsg.), Aufgaben im Schulbuch (S. 303-313). Bad Heilbrunn: Klinkhardt.
*Obersteiner, A., Reiss, K. & Martel, A. (2011). Offene Aufgaben in Schulbüchern und ihr Einsatz im Mathematikunterricht. In E. Matthes & S. Schütze (Hrsg.), Aufgaben im Schulbuch (S. 303-313). Bad Heilbrunn: Klinkhardt.
*Obersteiner, A., Dresler, T., Reiss, K.,Vogel, C. A., Pekrun, R., & Fallgatter, A. J. (2010). Bringing brain imaging to the school to assess arithmetic problemsolving. Chances and limitations in combining educational and neuroscientific research. ZDM. The International Journal on Mathematics Education, 42, 541-554.
*Obersteiner, A., Dresler, T., Reiss, K.,Vogel, C. A., Pekrun, R., & Fallgatter, A. J. (2010). Bringing brain imaging to the school to assess arithmetic problemsolving. Chances and limitations in combining educational and neuroscientific research. ZDM. The International Journal on Mathematics Education, 42, 541-554.
*Zöttl,L. & Reiss, K. (2010). Heuristische Lösungsbeispiele. Eine Lerngelegenheit für den anfänglichen Erwerb von Modellierungskompetenz. Der Mathematik-Unterricht, 56(4), 20-27.
*Zöttl,L. & Reiss, K. (2010). Heuristische Lösungsbeispiele. Eine Lerngelegenheit für den anfänglichen Erwerb von Modellierungskompetenz. Der Mathematik-Unterricht, 56(4), 20-27.
*Ufer, S., & Reiss, K. (2010). Inhaltsübergreifendeund inhaltsbezogene strukturierende Merkmale von Unterricht zum Beweisen in derGeometrie. Unterrichtswissenschaft, 38, 247-265.
*Ufer, S., & Reiss, K. (2010). Inhaltsübergreifendeund inhaltsbezogene strukturierende Merkmale von Unterricht zum Beweisen in der Geometrie. Unterrichtswissenschaft, 38, 247-265.
*Zöttl, L., Ufer, S., & Reiss, K. (2010).Modeling with heuristic worked examples in the KOMMAlearning environment. Journal für Mathematikdidaktik, 31, 143-165.
*Zöttl, L., Ufer, S., & Reiss, K. (2010).Modeling with heuristic worked examples in the KOMMAlearning environment. Journal für Mathematikdidaktik, 31, 143-165.
*Lorbeer, W. & Reiss, K. (2010). MathematischeKompetenzentwicklung im Übergang zwischen Schule und Hochschule: Ist der Kulturschock\unabwendbar? In W. Herget & K. Richter (Hrsg.), MathematischeKompetenzen entwickeln und erfassen. Festschrift für Werner Walsch zum 80.Geburtstag (S.87-98). Berlin: Franzbecker.
*Lorbeer, W. & Reiss, K. (2010). Mathematische Kompetenzentwicklung im Übergang zwischen Schule und Hochschule: Ist der Kulturschock\unabwendbar? In W. Herget & K. Richter (Hrsg.), Mathematische Kompetenzen entwickeln und erfassen. Festschrift für Werner Walsch zum 80. Geburtstag (S.87-98). Berlin: Franzbecker.
*Reiss, K. & Ufer, S. (2009). Was machtmathematisches Arbeiten aus? Empirische Ergebnisse zum Lernen vonArgumentationen, Begründungen und Beweisen. Jahresbericht der Deutschen Mathematiker-Vereinigung, 111, 155-177.
*Reiss, K. & Ufer, S. (2009). Was machtmathematisches Arbeiten aus? Empirische Ergebnisse zum Lernen von Argumentationen, Begründungen und Beweisen. Jahresbericht der Deutschen Mathematiker-Vereinigung, 111, 155-177.
*Dresler, T., Obersteiner, A., Schecklmann,M., Vogel, C.A., Ehlis, A., Ch., Richter, M.M., Plichta, M.M., Reiss, K.,Pekrun, R., & Fallgatter, A. J. (2009). Arithmeticaltasks presented in different formats and their influence on behavior and brainoxygenation as assessed with near-infrared spectroscopy (NIRS): a studyinvolving primary and secondary school children. Journal of Neural Transmission, 116, 1689-1700.
*Dresler, T., Obersteiner, A., Schecklmann,M., Vogel, C.A., Ehlis, A., Ch., Richter, M.M., Plichta, M.M., Reiss, K.,Pekrun, R., & Fallgatter, A. J. (2009). Arithmetical tasks presented in different formats and their influence on behavior and brain oxygenation as assessed with near-infrared spectroscopy (NIRS): a study involving primary and secondary school children. Journal of Neural Transmission, 116, 1689-1700.
*Reiss, K. & Winkelmann, H. (2009).Kompetenzstufenmodelle für das Fach Mathematik im Primarbereich. In D. Granzer,O. Köller, A. Bremerich-Vos, M. van den Heuvel-Panhuizen, K. Reiss &G.Walther (Hrsg.), Bildungsstandards Deutsch und Mathematik. Leistungsmessung in der Grundschule (S. 120-141). Weinheim:Beltz.
*Reiss, K. & Winkelmann, H. (2009).Kompetenzstufenmodelle für das Fach Mathematik im Primarbereich. In D. Granzer,O. Köller, A. Bremerich-Vos, M. van den Heuvel-Panhuizen, K. Reiss &G.Walther (Hrsg.), Bildungsstandards Deutsch und Mathematik. Leistungsmessung in der Grundschule (S. 120-141). Weinheim:Beltz.
*Reiss, K. (2009). Mindeststandards alsHerausforderung für den Mathematikunterricht. In A. Heinze & M. Grüßing(Hrsg.), Mathematiklernenvom Kindergarten bis zum Studium - Kontinuität und Kohärenz als Herausforderung fürden Mathematikunterricht (S. 191-198). Münster: Waxmann.
*Reiss, K. (2009). Mindeststandards als Herausforderung für den Mathematikunterricht. In A. Heinze & M. Grüßing(Hrsg.), Mathematik lernen vom Kindergarten bis zum Studium - Kontinuität und Kohärenz als Herausforderung für den Mathematikunterricht (S. 191-198). Münster: Waxmann.
*Ufer, S., Reiss, K. & Heinze, A. (2009).BIGMATH - Ergebnisse zur Entwicklung mathematischer Kompetenz in der Primarstufe.In A. Heinze & M. Grüßing (Hrsg.), Mathematiklernen vom Kindergarten bis zum Studium- Kontinuität und Kohärenz als Herausforderungfür den Mathematikunterricht (S. 61-85). Münster: Waxmann.
*Ufer, S., Reiss, K. & Heinze, A. (2009).BIGMATH - Ergebnisse zur Entwicklung mathematischer Kompetenz in der Primarstufe.In A. Heinze & M. Grüßing (Hrsg.), Mathematiklernen vom Kindergarten bis zum Studium- Kontinuität und Kohärenz als Herausforderungfür den Mathematikunterricht (S. 61-85). Münster: Waxmann.
*Reiss, K. (2009). Mathematische Kompetenzzwischen Grundschule und Sekundarstufe: Zusammenfassung undForschungsdesiderata. In A. Heinze & M. Grüßing (Hrsg.), Mathematiklernen vomKindergarten bis zum Studium - Kontinuität und Kohärenz als Herausforderung für denMathematikunterricht (S. 118-121). Münster: Waxmann.
*Reiss, K. (2009). Mathematische Kompetenzzwischen Grundschule und Sekundarstufe: Zusammenfassung und Forschungsdesiderata. In A. Heinze & M. Grüßing (Hrsg.), Mathematiklernen vom Kindergarten bis zum Studium - Kontinuität und Kohärenz als Herausforderung für den Mathematikunterricht (S. 118-121). Münster: Waxmann.
*Reiss, K. (2009). Erwerb mathematischer Kompetenzenin der Sekundarstufe: Zusammenfassung und Forschungsdesiderata. In A. Heinze& M. Grüßing (Hrsg.), Mathematiklernen vomKindergarten bis zum Studium - Kontinuität und Kohärenz als Herausforderung für denMathematikunterricht (S. 199-202). Münster: Waxmann.
*Reiss, K. (2009). Erwerb mathematischer Kompetenzen in der Sekundarstufe: Zusammenfassung und Forschungsdesiderata. In A. Heinze& M. Grüßing (Hrsg.), Mathematiklernen vomKindergarten bis zum Studium - Kontinuität und Kohärenz als Herausforderung für den Mathematikunterricht (S. 199-202). Münster: Waxmann.
*Heinze, A. & Reiss, K. (2009). Developing argumentation and proof competencies in the mathematicsclassroom. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teachingand learning proof across the grades: A K - 16 Perspective (pp. 191-203). NewYork, NY: Routledge.
*Heinze, A. & Reiss, K. (2009). Developing argumentation and proof competencies in the mathematicsclassroom. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teachingand learning proof across the grades: A K - 16 Perspective (pp. 191-203). NewYork, NY: Routledge.
*Richter, M. M., Zierhut, K. C., Dresler, T.,Plichta, M. M., Ehlis, A. C., Reiss, K., Pekrun, R. & Fallgatter, A. J.(2009). Changes in cortical blood oxygenation during arithmeticaltasks measured by near-infrared spectroscopy (NIRS). Journal of Neural Transmission, 116, 267-273.
*Richter, M. M., Zierhut, K. C., Dresler, T.,Plichta, M. M., Ehlis, A. C., Reiss, K., Pekrun, R. & Fallgatter, A. J.(2009). Changes in cortical blood oxygenation during arithmeticaltasks measured by near-infrared spectroscopy (NIRS). Journal of Neural Transmission, 116, 267-273.
*Reiss, K. & Ufer, S. (2009).Fachdidaktische Forschung im Rahmen der Bildungsforschung. Eine Diskussionwesentlicher Aspekte am Beispiel der Mathematikdidaktik. In R. Tippelt & B.Schmidt (Hrsg.), Handbuch Bildungsforschung (S. 199-213). Wiesbaden: Verlag für Sozialwissenschaften(3. Auflage 2010).
*Reiss, K. & Ufer, S. (2009). Fachdidaktische Forschung im Rahmen der Bildungsforschung. Eine Diskussionwesentlicher Aspekte am Beispiel der Mathematikdidaktik. In R. Tippelt & B.Schmidt (Hrsg.), Handbuch Bildungsforschung (S. 199-213). Wiesbaden: Verlag für Sozialwissenschaften(3. Auflage 2010).
*Herwartz-Emden, L., Reiss, K. &Mehringer, V. (2008). Das Projekt SOKKE. Ausgewählte Ergebnisse zurKompetenzentwicklung von Grundschulkindern mit Migrationshintergrund. Erziehung undUnterricht, 158,789-798.
*Herwartz-Emden, L., Reiss, K. & Mehringer, V. (2008). Das Projekt SOKKE. Ausgewählte Ergebnisse zur Kompetenzentwicklung von Grundschulkindern mit Migrationshintergrund. Erziehung undUnterricht, 158,789-798.
*Kuntze, S., Heinze, A. & Reiss, K.(2008). Vorstellungen von Mathematiklehrkräften zum Umgang mit Fehlern imUnterrichtsgespräch. Journal für Mathematikdidaktik, 29, 199-222.
*Kuntze, S., Heinze, A. & Reiss, K.(2008). Vorstellungen von Mathematiklehrkräften zum Umgang mit Fehlern im Unterrichtsgespräch. Journal für Mathematikdidaktik, 29, 199-222.
*Herwartz-Emden, L., Braun, C., Heinze, A.,Rudolph-Albert, F. & Reiss, K. (2008). Geschlechtsspezifsche Leistungsentwicklungvon Kindern mit und ohne Migrationshintergrund im frühen Grundschulalter. Zeitschrift fürGrundschulforschung, 1(2), 13-28.   
*Herwartz-Emden, L., Braun, C., Heinze, A., Rudolph-Albert, F. & Reiss, K. (2008). Geschlechtsspezifsche Leistungsentwicklungvon Kindern mit und ohne Migrationshintergrund im frühen Grundschulalter. Zeitschrift für Grundschulforschung, 1(2), 13-28.   
*Reiss, K., Heinze, A., Renkl, A. & Groß,Ch. (2008). Reasoning and proof in geometry: Effects of alearning environment based on heuristic worked-out examples. ZDM. The InternationalJournal on Mathematics Education, 40, 455-467.
*Reiss, K., Heinze, A., Renkl, A. & Groß,Ch. (2008). Reasoning and proof in geometry: Effects of alearning environment based on heuristic worked-out examples. ZDM. The InternationalJournal on Mathematics Education, 40, 455-467.
*Heinze,A., Cheng, Y. H., Ufer, S., Lin, F. L. & Reiss, K. (2008). How to fosterstudents' competencies in creating two-step proofs? Results from teachingexperiments in Taiwan and Germany. ZDM. TheInternational Journal on Mathematics Education, 40, 443-453.
*Heinze,A., Cheng, Y. H., Ufer, S., Lin, F. L. & Reiss, K. (2008). How to fosterstudents' competencies in creating two-step proofs? Results from teachingexperiments in Taiwan and Germany. ZDM. The International Journal on Mathematics Education, 40, 443-453.
*Hilbert, T., Renkl, A., Schworm, S.,Kessler, S. & Reiss, K. (2008). Learning to teach withworked-out examples: A computer-based learning environment for teachers. Journal of ComputerAssisted Learning, 24, 316-332.
*Hilbert, T., Renkl, A., Schworm, S.,Kessler, S. & Reiss, K. (2008). Learning to teach withworked-out examples: A computer-based learning environment for teachers. Journal of Computer Assisted Learning, 24, 316-332.
*Hilbert,T., Renkl, A., Kessler, S. & Reiss, K. (2008). Learning to prove ingeometry: Learning from heuristic examples and how it can be supported. Learning &Instruction, 18, 54-65.
*Hilbert,T., Renkl, A., Kessler, S. & Reiss, K. (2008). Learning to prove in geometry: Learning from heuristic examples and how it can be supported. Learning & Instruction, 18, 54-65.
*Reiss, K., Heinze, A. & Pekrun, R.(2007). Mathematische Kompetenz und ihre Entwicklung in der Grundschule. In M.Prenzel, I. Gogolin & H.H. Krüger (Hrsg.), Kompetenzdiagnostik. Sonderheft 8 derZeitschrift für Erziehungswissenschaft (S. 107-127). Wiesbaden: Verlag fürSozialwissenschaften.
*Reiss, K., Heinze, A. & Pekrun, R.(2007). Mathematische Kompetenz und ihre Entwicklung in der Grundschule. In M.Prenzel, I. Gogolin & H.H. Krüger (Hrsg.), Kompetenzdiagnostik. Sonderheft 8 der Zeitschrift für Erziehungswissenschaft (S. 107-127). Wiesbaden: Verlag für Sozialwissenschaften.
*Reiss,K. & Törner, G. (2007). Problem solving in the mathematics classroom: The Germanperspective. ZDM. The International Journal on MathematicsEducation, 39, 431-441.
*Reiss,K. & Törner, G. (2007). Problem solving in the mathematics classroom: The Germanperspective. ZDM. The International Journal on Mathematics Education, 39, 431-441.
*Törner, G., Schoenfeld, A. H. & Reiss,K. (2007). Problem solving around the world: Summing up thestate of the art. ZDM. The International Journal on Mathematics Education, 39,353.
*Törner, G., Schoenfeld, A. H. & Reiss,K. (2007). Problem solving around the world: Summing up thestate of the art. ZDM. The International Journal on Mathematics Education, 39,353.
*Heinze,A. & Reiss, K. (2007). Reasoning and proof in the mathematics classroom. Analysis, 27, 333-357.
*Heinze,A. & Reiss, K. (2007). Reasoning and proof in the mathematics classroom. Analysis, 27, 333-357.
*Reiss, K. (2007). Bildungsstandards und derMathematikunterricht. In P. Labudde (Hrsg.), Bildungsstandards am Gymnasium: Korsettoder Katalysator? (S. 263-271). Bern: HEP Verlag.
*Reiss, K. (2007). Bildungsstandards und der Mathematikunterricht. In P. Labudde (Hrsg.), Bildungsstandards am Gymnasium: Korsettoder Katalysator? (S. 263-271). Bern: HEP Verlag.
*Reiss, K., Heinze, A., Kessler, S.,Rudolph-Albert, F. & Renkl, A. (2007). Fosteringargumentation and proof competencies in the mathematics classroom. In M.Prenzel (Ed.), Studies on the educational quality of schools.The final report on the DFG Priority Programme (pp. 251-264). Münster: Waxmann.
*Reiss, K., Heinze, A., Kessler, S.,Rudolph-Albert, F. & Renkl, A. (2007). Fosteringargumentation and proof competencies in the mathematics classroom. In M.Prenzel (Ed.), Studies on the educational quality of schools.The final report on the DFG Priority Programme (pp. 251-264). Münster: Waxmann.
*Renkl, A., Hilbert, T. S., Schworm, S. &Reiss, K. (2007). Cognitive skill acquisition from complexexamples: A taxonomy of examples and tentative instructional guidelines. In M. Prenzel(Ed.), Studies on the educational quality of schools.The final report on the DFG PriorityProgramme (pp. 239-249). Münster: Waxmann.
*Renkl, A., Hilbert, T. S., Schworm, S. & Reiss, K. (2007). Cognitive skill acquisition from complexexamples: A taxonomy of examples and tentative instructional guidelines. In M. Prenzel(Ed.), Studies on the educational quality of schools. The final report on the DFG Priority Programme (pp. 239-249). Münster: Waxmann.
*Heinze,A., Herwartz-Emden, L. & Reiss, K. (2007). Mathematikkenntnisse und sprachliche Kompetenzbei Kindern mit Migrationshintergrund zu Beginn der Grundschulzeit. Zeitschrift für Pädagogik,53(4), 562-581.
*Heinze,A., Herwartz-Emden, L. & Reiss, K. (2007). Mathematikkenntnisse und sprachliche Kompetenz bei Kindern mit Migrationshintergrund zu Beginn der Grundschulzeit. Zeitschrift für Pädagogik,53(4), 562-581.
*Reiss, K. (2007). Bildungsstandards - eineZwischenbilanz am Beispiel der Mathematik. In H. Bayrhuber, D. Elster, D. Krüger& H.J. Vollmer (Hrsg.), Kompetenzentwicklung undAssessment (S.19-33). Innsbruck: Studien Verlag.
*Reiss, K. (2007). Bildungsstandards - eine Zwischenbilanz am Beispiel der Mathematik. In H. Bayrhuber, D. Elster, D. Krüger& H.J. Vollmer (Hrsg.), Kompetenzentwicklung und Assessment (S.19-33). Innsbruck: Studien Verlag.
*Heinze, A., Kessler, S., Kuntze, S., Lindmeier,A., Moormann, M., Reiss, K., Rudolph-Albert, F. & Zöttl, L. (2007). KannPaul besser argumentieren als Marie? Betrachtungen zur Beweiskompetenz vonMädchen und Jungen aus differentieller Perspektive. Eine Reanalyse von vierempirischen Untersuchungen. Journal für Mathematikdidaktik, 28(2),148-167.
*Heinze, A., Kessler, S., Kuntze, S., Lindmeier,A., Moormann, M., Reiss, K., Rudolph-Albert, F. & Zöttl, L. (2007). Kann Paul besser argumentieren als Marie? Betrachtungen zur Beweiskompetenz von Mädchen und Jungen aus differentieller Perspektive. Eine Reanalyse von vier empirischen Untersuchungen. Journal für Mathematikdidaktik, 28(2),148-167.
*Zöttl, L., Heinze, A. & Reiss, K.(2007). Problemlösen im Kontext: Unterschiede in der Bearbeitung vonAlltagsproblemen und mathematischen Problemen. In A. Peter-Koop & A.Bikner-Asbahs (Hrsg.), Mathematische Bildung - Mathematische Leistung (S. 217-232). Hildesheim:Franzbecker.
*Zöttl, L., Heinze, A. & Reiss, K.(2007). Problemlösen im Kontext: Unterschiede in der Bearbeitung von Alltagsproblemen und mathematischen Problemen. In A. Peter-Koop & A.Bikner-Asbahs (Hrsg.), Mathematische Bildung - Mathematische Leistung (S. 217-232). Hildesheim: Franzbecker.
*Kuntze, S. & Reiss, K. (2006). Profilemathematikbezogener motivationaler Prädispositionen. Zusammenhänge zwischenMotivation, Interesse, Fähigkeitsselbstkonzepten und Schulleistungsentwicklungin verschiedenen Lernumgebungen. Mathematica didactica, 29, 24-48.
*Kuntze, S. & Reiss, K. (2006). Profile mathematikbezogener motivationaler Prädispositionen. Zusammenhänge zwischen Motivation, Interesse, Fähigkeitsselbstkonzepten und Schulleistungsentwicklung in verschiedenen Lernumgebungen. Mathematica didactica, 29, 24-48.
*Reiss, K., Heinze, A., Kuntze, S., Kessler,S., Rudolph-Albert, F. & Renkl, A. (2006). Mathematiklernen mitheuristischen Lösungsbeispielen. In M. Prenzel & L. Allolio-Näcke (Hrsg.), Untersuchungen zurBildungsqualität von Schule (S. 194-208). Abschlussbericht des DFG-Schwerpunktprogramms. Münster:Waxmann.
*Reiss, K., Heinze, A., Kuntze, S., Kessler,S., Rudolph-Albert, F. & Renkl, A. (2006). Mathematiklernen mit heuristischen Lösungsbeispielen. In M. Prenzel & L. Allolio-Näcke (Hrsg.), Untersuchungen zur Bildungsqualität von Schule (S. 194-208). Abschlussbericht des DFG-Schwerpunktprogramms. Münster: Waxmann.
*Renkl, A., Hilbert, T., Schworm, S. &Reiss, K. (2006). Sich Beispiele selbst zu erklären ist ein probates Mittel,Verständnis zu fördern - bei Schülern wie bei Lehrern. In M. Prenzel & L.Allolio-Näcke (Hrsg.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht desDFG-Schwerpunktprogramms (S. 291-309). Münster: Waxmann.
*Renkl, A., Hilbert, T., Schworm, S. &Reiss, K. (2006). Sich Beispiele selbst zu erklären ist ein probates Mittel, Verständnis zu fördern - bei Schülern wie bei Lehrern. In M. Prenzel & L.Allolio-Näcke (Hrsg.), Untersuchungen zur Bildungsqualität von Schule. Abschlussbericht des DFG-Schwerpunktprogramms (S. 291-309). Münster: Waxmann.
*Reiss, K. & Reiss, M. (2006). Unterrichtsqualitätund der Mathematikunterricht. In I. Hosenfeld & F.W. Schrader (Hrsg.), Schulische Leistung.Grundlagen, Bedingungen, Perspektiven.(S. 225-242).Münster: Waxmann.
*Reiss, K. & Reiss, M. (2006). Unterrichtsqualität und der Mathematikunterricht. In I. Hosenfeld & F.W. Schrader (Hrsg.), Schulische Leistung. Grundlagen, Bedingungen, Perspektiven.(S. 225-242). Münster: Waxmann.
*Reiss, K. (2005). Fachdidaktische Forschungund empirische Bildungsforschung. In H. Mandl & B. Kopp (Hrsg.), Impulse für dieBildungsforschung. Stand und Perspektiven (Deutsche Forschungsgemeinschaft) (S. 62-68). Berlin: Akademie Verlag.
*Reiss, K. (2005). Fachdidaktische Forschung und empirische Bildungsforschung. In H. Mandl & B. Kopp (Hrsg.), Impulse für die Bildungsforschung. Stand und Perspektiven (Deutsche Forschungsgemeinschaft) (S. 62-68). Berlin: Akademie Verlag.
*Reiss, K. & Heinze, A. (2005).Argumentieren, BegrÜnden und Beweisen als Ziele des Mathematikunterrichts. InW. Henn & G. Kaiser (Hrsg.), Mathematikunterricht im Spannungsfeld vonEvolution und Evaluation. Festschrift für Werner Blum (S. 184-192). Hildesheim:Franzbecker.
*Reiss, K. & Heinze, A. (2005). Argumentieren, Begründen und Beweisen als Ziele des Mathematikunterrichts. In W. Henn & G. Kaiser (Hrsg.), Mathematikunterricht im Spannungsfeld von Evolution und Evaluation. Festschrift für Werner Blum (S. 184-192). Hildesheim: Franzbecker.
*Heinze, A., Reiss, K., & Rudolph, F.(2005). Mathematics achievement and interest inmathematics from a differential perspective. Zentralblatt für Didaktik der Mathematik, 37(3), 212-220.
*Heinze, A., Reiss, K., & Rudolph, F.(2005). Mathematics achievement and interest inmathematics from a differential perspective. Zentralblatt für Didaktik der Mathematik, 37(3), 212-220.
*Reiss, K. & Heinze, A. (2005). Problemsolving revisited. Überlegungen zu einem Kernthema der Mathematikdidaktik. InCh. Kaune, I. Schwank & J. Sjuts (Hrsg.), Mathematikdidaktik im Wissenschaftsgefüge:Zum Verstehen und Unterrichten mathematischen Denkens (S. 101-114). Schriftenreihe desForschungsinstituts für Mathematikdidaktik Nr. 40.1. Osnabrück:Forschungsinstitut für Mathematikdidaktik.
*Reiss, K. & Heinze, A. (2005). Problemsolving revisited. Überlegungen zu einem Kernthema der Mathematikdidaktik. In Ch. Kaune, I. Schwank & J. Sjuts (Hrsg.), Mathematikdidaktik im Wissenschaftsgefüge: Zum Verstehen und Unterrichten mathematischen Denkens (S. 101-114). Schriftenreihe des Forschungsinstituts für Mathematikdidaktik Nr. 40.1. Osnabrück: Forschungsinstitut für Mathematikdidaktik.
*Kuntze, S., Rechner, M. & Reiss, K.(2004). Inhaltliche Elemente und Anforderungsniveau des Unterrichtsgesprächs beim geometrischenBeweisen. Mathematica didactica, 27(1), 3-22.
*Kuntze, S., Rechner, M. & Reiss, K.(2004). Inhaltliche Elemente und Anforderungsniveau des Unterrichtsgesprächs beim geometrischen Beweisen. Mathematica didactica, 27(1), 3-22.
*Kuntze,S. & Reiss, K. (2004). Unterschiede zwischen Klassen hinsichtlich inhaltlicher Elemente undAnforderungsniveaus im Unterrichtsgespräch beim Erarbeiten von Beweisen.Ergebnisse einer Videoanalyse. Unterrichtswissenschaft, 32(4), 357-379.
*Kuntze,S. & Reiss, K. (2004). Unterschiede zwischen Klassen hinsichtlich inhaltlicher Elemente und Anforderungsniveaus im Unterrichtsgespräch beim Erarbeiten von Beweisen. Ergebnisse einer Videoanalyse. Unterrichtswissenschaft, 32(4), 357-379.
*Kuntze, S. & Reiss, K. (2004). Das Thema,,Argumentieren, Begründen und Beweisen“ im Mathematikunterricht als Beitrag zueinem wertorientierten Lernen. In E. Matthes (Hrsg.), Werteerziehung (S. 171-186). Donauwörth:Auer.
*Kuntze, S. & Reiss, K. (2004). Das Thema, Argumentieren, Begründen und Beweisen im Mathematikunterricht als Beitrag zu einem wertorientierten Lernen. In E. Matthes (Hrsg.), Werteerziehung (S. 171-186). Donauwörth: Auer.
*Reiss, K. (2004). Bildungsstandards und dieRolle der Fachdidaktik am Beispiel der Mathematik. Zeitschrift für Pädagogik,50(5),635-649.
*Reiss, K. (2004). Bildungsstandards und die Rolle der Fachdidaktik am Beispiel der Mathematik. Zeitschrift für Pädagogik, 50(5),635-649.
*Heinze, A. & Reiss, K. (2004).Mathematikleistung und Mathematikinteresse in differentieller Perspektive. InJ. Doll & M. Prenzel (Hrsg.), Studien zur Verbesserung der Bildungsqualität vonSchule: Lehrerprofessionalisierung, Unterrichtsentwicklung und Schülerförderung (S. 234-249). Münster:Waxmann.
*Heinze, A. & Reiss, K. (2004). Mathematikleistung und Mathematikinteresse in differentieller Perspektive. In J. Doll & M. Prenzel (Hrsg.), Studien zur Verbesserung der Bildungsqualität von Schule: Lehrerprofessionalisierung, Unterrichtsentwicklung und Schülerförderung (S. 234-249). Münster: Waxmann.
*Reiss, K. (2004). Bildungsstandards für denMathematikunterricht. DMV-Mitteilungen, 12(2), 40-43.
*Reiss, K. (2004). Bildungsstandards für den Mathematikunterricht. DMV-Mitteilungen, 12(2), 40-43.
*Heinze,A., Anderson, I. & Reiss, K. (2004). Discrete mathematics and proof in the highschool. Introduction.Zentralblattfür Didaktik der Mathematik, 36(2), 44-45.
*Heinze,A., Anderson, I. & Reiss, K. (2004). Discrete mathematics and proof in the highschool. Introduction. Zentralblattfür Didaktik der Mathematik, 36(2), 44-45.
*Heinze,A. & Reiss, K. (2004). The teaching of proof at the lower secondary level –a video study. Zentralblatt für Didaktik der Mathematik, 36(3), 98-104.
*Heinze,A. & Reiss, K. (2004). The teaching of proof at the lower secondary level – a video study. Zentralblatt für Didaktik der Mathematik, 36(3), 98-104.
*Reiss, K. (2003). Bildungsstandards oderLehrpläne? Perspektiven für die Weiterentwicklung von Schule und Unterricht amBeispiel der Mathematik. Die Deutsche Schule, 95(3), 267-279.
*Reiss, K. (2003). Bildungsstandards oder Lehrpläne? Perspektiven für die Weiterentwicklung von Schule und Unterricht am Beispiel der Mathematik. Die Deutsche Schule, 95(3), 267-279.
*Heinze,A. & Reiss, K. (2003). Reasoning and proof: Methodological knowledge as a componentof proof competence. International Newsletteron the Teaching and Learning ofMathematical Proof, Spring 2003.
*Heinze,A. & Reiss, K. (2003). Reasoning and proof: Methodological knowledge as a componentof proof competence. International Newsletteron the Teaching and Learning of Mathematical Proof, Spring 2003.
*Reiss, K. & Törner, G. (2003). PISA2000: Eine Klärung von Missverständnissen. DMVMitteilungen, 11(1), 46-48.
*Reiss, K. & Törner, G. (2003). PISA2000: Eine Klärung von Missverständnissen. DMV Mitteilungen, 11(1), 46-48.
*Reiss, K., Hellmich, F. & Thomas, J.(2002). Individuelle und schulische Bedingungsfaktoren für Argumentationen undBeweise im Mathematikunterricht. In M. Prenzel & J. Doll (Hrsg.) Bildungsqualität vonSchule: Schulische und außerschulische Bedingungen mathematischer,naturwissenschaftlicher und überfachlicher Kompetenzen. Zeitschrift für Pädagogik (45.Beiheft), 51-64.
*Reiss, K., Hellmich, F. & Thomas, J.(2002). Individuelle und schulische Bedingungsfaktoren für Argumentationen und Beweise im Mathematikunterricht. In M. Prenzel & J. Doll (Hrsg.) Bildungsqualität von Schule: Schulische und außerschulische Bedingungen mathematischer, naturwissenschaftlicher und überfachlicher Kompetenzen. Zeitschrift für Pädagogik (45.Beiheft), 51-64.
*Reiss, K. & Törner, G. (2002). Was hatPISA 2000 den Mathematikerinnen und Mathematikern zu sagen? DMV-Mitteilungen, 10(2), 45-51.
*Reiss, K. & Törner, G. (2002). Was hat PISA 2000 den Mathematikerinnen und Mathematikern zu sagen? DMV-Mitteilungen, 10(2), 45-51.
*Reiss,K. & Renkl, A. (2002). Learning to prove: The idea of heuristic examples. Zentralblatt fürDidaktik der Mathematik, 34(1), 29-35.
*Reiss,K. & Renkl, A. (2002). Learning to prove: The idea of heuristic examples. Zentralblatt für Didaktik der Mathematik, 34(1), 29-35.
*Kwak, J., Reiss, K. & Thomas, J. (2002).Leistungen von deutschen Schülerinnen und Schülern der Klasse 7 beim Beweisenund Argumentieren (in koreanisch). Journal of the Korea Society of Mathematical Education, SeriesE: Communications of Mathematical Education, 13, 265-274.
*Kwak, J., Reiss, K. & Thomas, J. (2002). Leistungen von deutschen Schülerinnen und Schülern der Klasse 7 beim Beweisenund Argumentieren (in koreanisch). Journal of the Korea Society of Mathematical Education, SeriesE: Communications of Mathematical Education, 13, 265-274.
*Reiss, K. (2002). Argumentieren, Begründen,Beweisen im Mathematikunterricht. Projektserver SINUS. Bayreuth: Universität.
*Reiss, K. (2002). Argumentieren, Begründen, Beweisen im Mathematikunterricht. Projektserver SINUS. Bayreuth: Universität.
*Pade, J., Polley, L., Reiss, K. &Schmieder, G. (2002). Komplexe Zahlen - ein Thema für die Schule. In R. Brechel(Hrsg.), ZurDidaktik der Physik und Chemie 22 (S. 144-146). Alsbach: Leuchtturm Verlag.
*Pade, J., Polley, L., Reiss, K. & Schmieder, G. (2002). Komplexe Zahlen - ein Thema für die Schule. In R. Brechel(Hrsg.), Zur Didaktik der Physik und Chemie 22 (S. 144-146). Alsbach: Leuchtturm Verlag.
*Reiss, K. & Thomas, J. (2000).Wissenschaftliches Denken beim Beweisen in der Geometrie. Ergebnisse einerStudie mit Schülerinnen und Schülern der gymnasialen Oberstufe. Mathematica didactica,23(1) , 96-112.
*Reiss, K. & Thomas, J. (2000).Wissenschaftliches Denken beim Beweisen in der Geometrie. Ergebnisse einerStudie mit Schülerinnen und Schülern der gymnasialen Oberstufe. Mathematica didactica,23(1) , 96-112.
*Hartmann, J., Heinze, A., Pieper-Seier, I.,Reiss, K., Sprockhoff, W. & Steinberg, G. (2000). Wie viel Mathematikbrauchen Lehramtsstudierende? Diskussionsbeitrag. Journal für Mathematikdidaktik,21, 163-165.
*Hartmann, J., Heinze, A., Pieper-Seier, I.,Reiss, K., Sprockhoff, W. & Steinberg, G. (2000). Wie viel Mathematikbrauchen Lehramtsstudierende? Diskussionsbeitrag. Journal für Mathematikdidaktik, 21, 163-165.
*Hartmann, J. & Reiss, K. (2000).Auswirkungen der Bearbeitung räumlich-geometrischer Aufgaben auf dasRaumvorstellungsvermögen. In D. Leutner & R. Brünken (Hrsg.), Neue Medien inUnterricht, Aus- und Weiterbildung (S. 85-93). Münster:Waxmann.
*Hartmann, J. & Reiss, K. (2000). Auswirkungen der Bearbeitung räumlich-geometrischer Aufgaben auf das Raumvorstellungsvermögen. In D. Leutner & R. Brünken (Hrsg.), Neue Medien in Unterricht, Aus- und Weiterbildung (S. 85-93). Münster: Waxmann.
*Reiss,K. (1999). George Boole: An investigation of the laws of thought on which are foundedthe mathematical theories of logic and probability, 1854. In F. Volpi (Hrsg.), Großes Werklexikon derPhilosophie (S.209-210). Stuttgart: Kröner.
*Reiss,K. (1999). George Boole: An investigation of the laws of thought on which are foundedthe mathematical theories of logic and probability, 1854. In F. Volpi (Hrsg.), Großes Werklexikon der Philosophie (S.209-210). Stuttgart: Kröner.
*Reiss, K. (1999). Kurt Gödel: Über formalunentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, 1931. In F. Volpi(Hrsg.), GroßesWerklexikon der Philosophie (S. 575). Stuttgart: Kröner.
*Reiss, K. (1999). Kurt Gödel: Über formalunentscheidbare Sätze der Principia Mathematica und verwandter Systeme I, 1931. In F. Volpi(Hrsg.), Großes Werklexikon der Philosophie (S. 575). Stuttgart: Kröner.
*Reiss, K. (1999). David Hilbert und PaulBernays: Grundlagen der Mathematik, Bd. I, 1934, und Bd. II, 1939. In F. Volpi(Hrsg.), GroßesWerklexikon der Philosophie (S. 689). Stuttgart: Kröner.
*Reiss, K. (1999). David Hilbert und Paul Bernays: Grundlagen der Mathematik, Bd. I, 1934, und Bd. II, 1939. In F. Volpi(Hrsg.), Großes Werklexikon der Philosophie (S. 689). Stuttgart: Kröner.
*Reiss,K. (1999). Giuseppe Peano: Principii di logica mathematica, 1891. In F. Volpi (Hrsg.), Großes Werklexikon derPhilosophie (S.1141). Stuttgart: Kröner.
*Reiss,K. (1999). Giuseppe Peano: Principii di logica mathematica, 1891. In F. Volpi (Hrsg.), Großes Werklexikon der Philosophie (S.1141). Stuttgart: Kröner.
*Reiss, K. (1999). René Thom: Stabilitéstructurelle et morphogenése. Essai d'une théorie générale des modéles, 1972.In F. Volpi (Hrsg.), Großes Werklexikon der Philosophie (S. 1476-1477). Stuttgart: Kröner.
*Reiss, K. (1999). René Thom: Stabilitéstructurelle et morphogenése. Essai d'une théorie générale des modéles, 1972. In F. Volpi (Hrsg.), Großes Werklexikon der Philosophie (S. 1476-1477). Stuttgart: Kröner.
*Pospeschill, M. & Reiss, K. (1999). Phasenmodellsich entwickelnder Problemlösestrategien bei räumlich-geometrischem Material. Journal fürMathematikdidaktik, 20, 166-185.
*Pospeschill, M. & Reiss, K. (1999). Phasenmodellsich entwickelnder Problemlösestrategien bei räumlich-geometrischem Material. Journal für Mathematikdidaktik, 20, 166-185.
*Reiss, K. & Abel, J. (1999). DieDiagnose deklarativen Wissens mit Hilfe von Concept Maps. In H. Henning(Hrsg.), Mathematiklernendurch Handeln und Erfahrung (S. 175-184). Oldenburg: Bültmann und Gerriets.
*Reiss, K. & Abel, J. (1999). Die Diagnose deklarativen Wissens mit Hilfe von Concept Maps. In H. Henning(Hrsg.), Mathematiklernen durch Handeln und Erfahrung (S. 175-184). Oldenburg: Bültmann und Gerriets.
*Reiss, K. (1997). Zur mentalen Repräsentationeinfacher geometrischer Begriffe in Abhängigkeit von einer geeigneten Problemlöseumgebung.Mathematica didactica, 20, 67-94.
*Reiss, K. (1997). Zur mentalen Repräsentation einfacher geometrischer Begriffe in Abhängigkeit von einer geeigneten Problemlöseumgebung. Mathematica didactica, 20, 67-94.
*Reiss,K. & Wellstein, H. (1996). Static and dynamic aspects of declarativeknowledge in a geometry problem solving context. Zentralblatt für Didaktik der Mathematik,28, 184-193.
*Reiss,K. & Wellstein, H. (1996). Static and dynamic aspects of declarative knowledge in a geometry problem solving context. Zentralblatt für Didaktik der Mathematik, 28, 184-193.
*Reiss, K., Wellstein, H. & Bothsmann, M.(1996). Statische und dynamische Aspekte deklarativen Wissens bei geometrischenProblemlöseprozessen unter Berücksichtigung geschlechtsspezifischerUnterschiede. Arbeits-und Forschungsberichte der Forschungsstelle für Frauenfragen, Heft 2. Flensburg: Universität.
*Reiss, K., Wellstein, H. & Bothsmann, M.(1996). Statische und dynamische Aspekte deklarativen Wissens bei geometrischen Problemlöseprozessen unter Berücksichtigung geschlechtsspezifischer Unterschiede. Arbeits-und Forschungsberichte der Forschungsstelle für Frauenfragen, Heft 2. Flensburg: Universität.
*Bothsmann, M., Hennig, J., Kern, D. &Reiss, K. (1996). Eine Bestandsaufnahme zur Nutzung des Datennetzes Internetunter geschlechtsspezifischen Gesichtspunkten. Arbeits- und Forschungsberichte derForschungsstelle für Frauenfragen, Heft 1. Flensburg: Universität.
*Bothsmann, M., Hennig, J., Kern, D. & Reiss, K. (1996). Eine Bestandsaufnahme zur Nutzung des Datennetzes Internetunter geschlechtsspezifischen Gesichtspunkten. Arbeits- und Forschungsberichte der Forschungsstelle für Frauenfragen, Heft 1. Flensburg: Universität.
*Reiss,K. & Reiss, M. (1995). Aspects of acquiring iterative structures incomputer programming. In K.F. Wender, F. Schmalhofer & H.D. Böcker (Eds.), Cognition and computer programming (pp. 219-239). Norwood, NJ: Ablex Publishing.
*Reiss,K. & Reiss, M. (1995). Aspects of acquiring iterative structures incomputer programming. In K.F. Wender, F. Schmalhofer & H.D. Böcker (Eds.), Cognition and computer programming (pp. 219-239). Norwood, NJ: Ablex Publishing.
*Reiss,K. & Albrecht, A. (1995). A gender specific view on geometry learning. InB. Grevholm& G. Hanna (Eds.), Gender and MathematicsEducation (pp. 299-309). Lund: Lund University Press.
*Reiss,K. & Albrecht, A. (1995). A gender specific view on geometry learning. In B. Grevholm & G. Hanna (Eds.), Gender and Mathematics Education (pp. 299-309). Lund: Lund University Press.
*Reiss, K. & Albrecht, A. (1994).Unterscheiden sich Mädchen und Jungen beim Geometrielernen mit und ohneComputerunterstützung? Mathematica Didactica, 17, 90-105.
*Reiss, K. & Albrecht, A. (1994). Unterscheiden sich Mädchen und Jungen beim Geometrielernen mit und ohne Computerunterstützung? Mathematica Didactica, 17, 90-105.
*Reiss, K. (1994). Computereinsatz vs.traditioneller Unterricht in der Elementargeometrie: Zur Förderung derRaumanschauung. In J. Schönbeck, H. Struve & K. Volkert (Hrsg.), Der Wandel im Lehren undLernen von Mathematik und Naturwissenschaften. Band I: Mathematik (S. 247-252). Weinheim: Deutscher StudienVerlag.
*Reiss, K. (1994). Computereinsatz vs. traditioneller Unterricht in der Elementargeometrie: Zur Förderung der Raumanschauung. In J. Schönbeck, H. Struve & K. Volkert (Hrsg.), Der Wandel im Lehren und Lernen von Mathematik und Naturwissenschaften. Band I: Mathematik (S. 247-252). Weinheim: Deutscher StudienVerlag.
*Haussmann, K. & Reiss, M. (1990). Wieintelligent sind tutorielle Systeme? Zentralblatt für Didaktik der Mathematik, 22, 158-163.
*Haussmann, K. & Reiss, M. (1990). Wie intelligent sind tutorielle Systeme? Zentralblatt für Didaktik der Mathematik, 22, 158-163.
*Haussmann, K. & Reiss, M. (1990).KASIMIR: Die Modellierung einer iterativen Strategie beim Lösen einesrekursiven Problems. In K. Haussmann & M. Reiss (Hrsg.), MathematischeLehr-Lern-Denkprozesse (S. 12-30). Göttingen: Hogrefe.
*Haussmann, K. & Reiss, M. (1990). KASIMIR: Die Modellierung einer iterativen Strategie beim Lösen eines rekursiven Problems. In K. Haussmann & M. Reiss (Hrsg.), Mathematische Lehr-Lern-Denkprozesse (S. 12-30). Göttingen: Hogrefe.
*Reiss, M. & Haussmann, K. (1990).Deklarative Wissensdiagnostik im Bereich rekursiven Denkens. In K. Haussmann& M. Reiss (Hrsg.), Mathematische Lehr-Lern-Denkprozesse (S. 131-151). Göttingen: Hogrefe.
*Reiss, M. & Haussmann, K. (1990). Deklarative Wissensdiagnostik im Bereich rekursiven Denkens. In K. Haussmann & M. Reiss (Hrsg.), Mathematische Lehr-Lern-Denkprozesse (S. 131-151). Göttingen: Hogrefe.
*Haussmann, K. & Reiss, M. (1990). ZurEntwicklung iterativer und rekursiver Strukturen. Annales de Didactique etde Sciences Cognitives, 3, 163-193.
*Haussmann, K. & Reiss, M. (1990). Zur Entwicklung iterativer und rekursiver Strukturen. Annales de Didactique et de Sciences Cognitives, 3, 163-193.
*Haussmann, K. (1989). Fühlen, Tasten,Greifen und Begreifen. Erfahrungen mit den Händen im propädeutischenGeometrieunterricht. Karlsruher Pädagogische Beiträge, 19, 97-106.
*Haussmann, K. (1989). Fühlen, Tasten, Greifen und Begreifen. Erfahrungen mit den Händen im propädeutischen Geometrieunterricht. Karlsruher Pädagogische Beiträge, 19, 97-106.
*Haussmann, K. & Reiss, M. (1989).Strategien bei der Lösung rekursiver Probleme. Eine prozessorientierte Analyserekursiven Denkens. Journal für Mathematikdidaktik, 10, 39-61.
*Haussmann, K. & Reiss, M. (1989). Strategien bei der Lösung rekursiver Probleme. Eine prozessorientierte Analyserekursiven Denkens. Journal für Mathematikdidaktik, 10, 39-61.
*Haussmann, K. & Reiss, M. (1986).Rekursive Strukturen und ihre Rolle im Mathematikunterricht. Karlsruher PädagogischeBeiträge, 7, 70-90.
*Haussmann, K. & Reiss, M. (1986). Rekursive Strukturen und ihre Rolle im Mathematikunterricht. Karlsruher PädagogischeBeiträge, 7, 70-90.
*Haussmann, K. (1986). Iteratives vs. rekursivesDenken beim Problemlösen im Mathematikunterricht. Mathematica Didactica,9, 61-74.
*Haussmann, K. (1986). Iteratives vs. rekursives Denken beim Problemlösen im Mathematikunterricht. Mathematica Didactica,9, 61-74.
*Haussmann, K. (1985). Taktile Erfahrungen imGeometrieunterricht der Grundschule. Mathematische Unterrichtspraxis, 6(1), 1-6.
*Haussmann, K. (1985). Taktile Erfahrungen im Geometrieunterricht der Grundschule. Mathematische Unterrichtspraxis, 6(1), 1-6.
*Haussmann, K. (1984). Probleme und Möglichkeiteneiner Informatikausbildung für Lehrer und Lehramtsstudenten. Karlsruher PädagogischeBeiträge, 5(10), 108-118.
*Haussmann, K. (1984). Probleme und Möglichkeiteneiner Informatikausbildung für Lehrer und Lehramtsstudenten. Karlsruher PädagogischeBeiträge, 5(10), 108-118.


37

Bearbeitungen