Simulationen im Stochastikunterricht: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 11: Zeile 11:
[[Rolf Biehler|Biehler]] nennt drei Situationen, in denen stochastische Simulationen sinnvoll eingesetzt werden können [Maxara 2008 <sup>4</sup>, S. 14]:
[[Rolf Biehler|Biehler]] nennt drei Situationen, in denen stochastische Simulationen sinnvoll eingesetzt werden können [Maxara 2008 <sup>4</sup>, S. 14]:
* um Theorien zu überprüfen (Theorieprüfung),
* um Theorien zu überprüfen (Theorieprüfung),
* um Vermutungen für und Hinweise auf theoretische Ergebnisse zu gewinnen (Heuristische Funktion)
* um Vermutungen für und Hinweise auf theoretische Ergebnisse zu gewinnen ([[Heuristik|Heuristische Funktion]])
* um Wahrscheinlichkeiten rein statistisch zu bestimmen (Schätzfunktion)  <br />
* um Wahrscheinlichkeiten rein statistisch zu bestimmen (Schätzfunktion)  <br />
Insbesondere die Verwendung von Statistiksoftware wie Exel, SPSS und FATHOM am Computer ermöglicht einen vielversprechenden Einsatz von Simulationen. Es können auf vielfältige Arten Zufallszahlen erzeugt werden, typische Zufallsgeräte wie Würfel, Münze sowie das Ziehen aus der Urne mit und ohne Zurücklegen der Urne mit und ohne Zurücklegen lassen sich nachbilden und Zufallsexperimente können auf einfache und schnelle Weise 1000fach oder 10000fach wiederholt werden. Vorteilhaft ist zudem die die einfache grafische Darstellung der entstehenden Häufigkeitsverteilungen.<sup>5</sup>
Insbesondere die Verwendung von Statistiksoftware wie Exel, SPSS und FATHOM am Computer ermöglicht einen vielversprechenden Einsatz von Simulationen. Es können auf vielfältige Arten Zufallszahlen erzeugt werden, typische Zufallsgeräte wie Würfel, Münze sowie das Ziehen aus der Urne mit und ohne Zurücklegen lassen sich nachbilden und Zufallsexperimente können auf einfache und schnelle Weise 1000fach oder 10000fach wiederholt werden. Vorteilhaft ist zudem die einfache grafische Darstellung der entstehenden Häufigkeitsverteilungen.<sup>5</sup>


==Ziele beim Einsatz von Simulationen im Stochastikunterricht==
==Ziele beim Einsatz von Simulationen im Stochastikunterricht==
[[Rolf Biehler|Biehler]] differenziert zwei Klassen von didaktischen Anwendungen der stochastischen Simulation: <br />
[[Rolf Biehler|Biehler]] differenziert zwei Klassen von didaktischen Anwendungen der stochastischen Simulation: Zum einen kann die Simulation als Werkzeug zur Lösung stochastischer Problemstellungen genutzt werden. Die Simulation dient dabei als Ersatz oder Kontrolle für theoretische Berechnungen. Zum zweiten ermöglicht die Verwendung von Computersimulationen einen experimentellen Umgang mit stochastischen Problemstellungen. Darüber werden Schüler vertraut mit stochastischen Situationen und man kann das intuitive Verständnis der Schüler fördern. Weiter kann man über den experimentellen Zugang zentrale stochastische Begriffe wie z. B. den Erwartungswert, die Varianz oder auch den Verteilungsbegriff vorbereiten [Meyfarth 2008 <sup>2</sup>, S. 15-16]. <br />
Zum einen kann die Simulation als Werkzeug zur Lösung stochastischer Problemstellungen verwendet werden. Die Simulation dient hier als Ersatz oder Kontrolle für theoretische Berechnungen. Zum zweiten ermöglicht die Verwendung von Computersimulationen einen experimentellen Umgang mit stochastischen Problemstellungen. Hierüber werden Schülerinnen und Schüler vertraut mit stochastischen Situationen und man kann das intuitive Verständnis der Schülerinnen und Schüler fördern. Weiter kann man über den experimentellen Zugang zu stochastischen Problemstellungen zentrale stochastische Begriffe wie z. B. den Erwartungswert, die Varianz oder auch den Verteilungsbegriff vorbereiten [Meyfarth 2008 <sup>2</sup>, S. 15-16]. <br />
   
   
[[Thorsten Meyfarth|Meyfarth]] betont zudem das durch den Einsatz im Simulationen im Stochastikunterricht ein zweiter Zugang zum Wahrscheinlichkeitsbegriff möglich wird. Über relative Häufigkeiten in vielfach wiederholten Simulationsdurchgängen können Wahrscheinlichkeiten bestimmt und so der frequentistische Zugang gewählt werden [Meyfarth 2008 <sup>2</sup>, S. 16]. Hier zahlt sich insbesondere der Computereinsatz für das häufige Wiederholen von Zufallsexperimenten aus. <br />
[[Thorsten Meyfarth|Meyfarth]] betont zudem das durch den Einsatz von Simulationen im Stochastikunterricht ein zweiter Zugang zum Wahrscheinlichkeitsbegriff möglich wird. Über relative Häufigkeiten in vielfach wiederholten Simulationsdurchgängen können Wahrscheinlichkeiten bestimmt und so der frequentistische Zugang neben dem theoretischen Zugang gewählt werden [Meyfarth 2008 <sup>2</sup>, S. 16]. Hier zahlt sich insbesondere der Computereinsatz für das häufige Wiederholen von Zufallsexperimenten aus. <br />
    
    
[[Carmen Maxara|Maxara]] und [[Rolf Biehler|Biehler]] differenzieren die erste Klasse noch nach der Art des Werkzeugeinsatzes [Maxara 2008 <sup>4</sup>, S. 23-28]:
[[Carmen Maxara|Maxara]] und [[Rolf Biehler|Biehler]] differenzieren die erste Klasse noch nach der Art des Werkzeugeinsatzes [Maxara 2008 <sup>4</sup>, S. 23-28]:
Zeile 49: Zeile 48:
* Schüler wurden über die anwendungsorientierten Aufgaben zu Modellierungstätigkeiten angeregt
* Schüler wurden über die anwendungsorientierten Aufgaben zu Modellierungstätigkeiten angeregt
* deutlich positive Effekte des Einsatzes der Computersimulationen und der anwendungsorientierten Aufgaben auf die Motivation und das Interesse der Schüler
* deutlich positive Effekte des Einsatzes der Computersimulationen und der anwendungsorientierten Aufgaben auf die Motivation und das Interesse der Schüler
* in Verbindung mit der selbstständigen Schülerarbeit am Computer konnte das im Mathematikunterricht häufig vorherrschende Muster des lehrerzentrierten Unterrichts aufgebrochen werden.
* in Verbindung mit der selbstständigen Schülerarbeit am Computer konnte das im Mathematikunterricht häufig vorherrschende Muster des lehrerzentrierten Unterrichts aufgebrochen werden
   
   
==Literatur==
==Literatur==
Zeile 57: Zeile 56:
in der Sekundarstufe II. Tietze, Uwe-Peter; Klika, Manfred; Wolper, Hans (Hrsg.) Braunschweig, Vieweg, S. 129. <br />
in der Sekundarstufe II. Tietze, Uwe-Peter; Klika, Manfred; Wolper, Hans (Hrsg.) Braunschweig, Vieweg, S. 129. <br />
<sup>4</sup> [[Carmen Maxara|Maxara, Carmen]] (2008): [[Stochastische Simulation von Zufallsexperimenten mit Fathom – eine theoretische Werkzeuganalyse und explorative Fallstudie]]. Dissertation, Universität Kassel <br />
<sup>4</sup> [[Carmen Maxara|Maxara, Carmen]] (2008): [[Stochastische Simulation von Zufallsexperimenten mit Fathom – eine theoretische Werkzeuganalyse und explorative Fallstudie]]. Dissertation, Universität Kassel <br />
<sup>5</sup> [[Rolf Biehler|Biehler, Rolf]]; [[Carmen Maxara|Maxara, Carmen]](2007): Integration von stochastischer Simulation in den Stochastikunterricht mit Hilfe von Werkzeugsoftware. In: Der Mathematikunterricht 53 (3): 45-62. <br />
<sup>5</sup> [[Rolf Biehler|Biehler, Rolf]]; [[Carmen Maxara|Maxara, Carmen]] (2007): Integration von stochastischer Simulation in den Stochastikunterricht mit Hilfe von Werkzeugsoftware. In: Der Mathematikunterricht 53 (3): 45-62. <br />
<sup>6</sup> [[Hans Wolpers|Wolpers, Hans]] und [[Stefan Götz|Götz, Stefan]] (2002). Didaktik der Stochastik, Band 3. Mathematikunterricht  in der Sekundarstufe II. H.-P. Tietze, M. Klika und H. Wolper (Hrsg.) Braunschweig, Vieweg, S.130<br />
<sup>6</sup> [[Hans Wolpers|Wolpers, Hans]] und [[Stefan Götz|Götz, Stefan]] (2002). Didaktik der Stochastik, Band 3. Mathematikunterricht  in der Sekundarstufe II. H.-P. Tietze, M. Klika und H. Wolper (Hrsg.) Braunschweig, Vieweg, S.130<br />
<sup>7</sup> Wollring, Bernd: Schülerversuche zur Wahrscheinlichkeit. Simulationen zum Drei-Türen-Problem - erste Evaluation. In: Beiträge zum Mathematikunterricht 1992. Hildesheim, Franzbecker. <br />
<sup>7</sup> Wollring, Bernd: Schülerversuche zur Wahrscheinlichkeit. Simulationen zum Drei-Türen-Problem - erste Evaluation. In: Beiträge zum Mathematikunterricht 1992. Hildesheim, Franzbecker. <br />