Simulationen im Stochastikunterricht: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 8: Zeile 8:
[[Carmen Maxara|Maxara]] hebt die Modellbildung als einen unerlässlichen Bestandteil des Simulierens hervor: <br />
[[Carmen Maxara|Maxara]] hebt die Modellbildung als einen unerlässlichen Bestandteil des Simulierens hervor: <br />
„Wenn man die Realsituation durch ein passendes Modell ersetzt, anhand dessen Experimente durchgeführt werden, so spricht man von Simulation.“ <br />
„Wenn man die Realsituation durch ein passendes Modell ersetzt, anhand dessen Experimente durchgeführt werden, so spricht man von Simulation.“ <br />
„Erst die Modellierung einer stochastischen Situation macht das Durchführen eines Zufallsexperiments zu einer Simulation“.<sup>4</sup> <br />
„Erst die Modellierung einer stochastischen Situation macht das Durchführen eines Zufallsexperiments zu einer Simulation“.[Maxara 2008 <sup>4</sup>, S. 14-15] <br />


[[Rolf Biehler|Biehler]] nennt drei Situationen, in denen stochastische Simulationen sinnvoll eingesetzt werden können: <sup>4</sup>
[[Rolf Biehler|Biehler]] nennt drei Situationen, in denen stochastische Simulationen sinnvoll eingesetzt werden können [Maxara 2008 <sup>4</sup>, S. 14]:
* um Theorien zu überprüfen (Theorieprüfung),
* um Theorien zu überprüfen (Theorieprüfung),
* um Vermutungen für und Hinweise auf theoretische Ergebnisse zu gewinnen (Heuristische Funktion)
* um Vermutungen für und Hinweise auf theoretische Ergebnisse zu gewinnen (Heuristische Funktion)
Zeile 18: Zeile 18:
==Ziele beim Einsatz von Simulationen im Stochastikunterricht==
==Ziele beim Einsatz von Simulationen im Stochastikunterricht==
[[Rolf Biehler|Biehler]] differenziert zwei Klassen von didaktischen Anwendungen der stochastischen Simulation: <br />
[[Rolf Biehler|Biehler]] differenziert zwei Klassen von didaktischen Anwendungen der stochastischen Simulation: <br />
Zum einen kann die Simulation als Werkzeug zur Lösung stochastischer Problemstellungen verwendet werden. Die Simulation dient hier als Ersatz oder Kontrolle für theoretische Berechnungen. Zum zweiten ermöglicht die Verwendung von Computersimulationen einen experimentellen Umgang mit stochastischen Problemstellungen. Hierüber werden Schülerinnen und Schüler vertraut mit stochastischen Situationen und man kann das intuitive Verständnis der Schülerinnen und Schüler fördern. Weiter kann man über den experimentellen Zugang zu stochastischen Problemstellungen zentrale stochastische Begriffe wie z. B. den Erwartungswert, die Varianz oder auch den Verteilungsbegriff vorbereiten. <sup>2</sup> <br />
Zum einen kann die Simulation als Werkzeug zur Lösung stochastischer Problemstellungen verwendet werden. Die Simulation dient hier als Ersatz oder Kontrolle für theoretische Berechnungen. Zum zweiten ermöglicht die Verwendung von Computersimulationen einen experimentellen Umgang mit stochastischen Problemstellungen. Hierüber werden Schülerinnen und Schüler vertraut mit stochastischen Situationen und man kann das intuitive Verständnis der Schülerinnen und Schüler fördern. Weiter kann man über den experimentellen Zugang zu stochastischen Problemstellungen zentrale stochastische Begriffe wie z. B. den Erwartungswert, die Varianz oder auch den Verteilungsbegriff vorbereiten [Meyfarth 2008 <sup>2</sup>, S. 15-16]. <br />
   
   
[[Thorsten Meyfarth|Meyfarth]] betont zudem das durch den Einsatz im Simulationen im Stochastikunterricht ein zweiter Zugang zum Wahrscheinlichkeitsbegriff möglich wird. Über relative Häufigkeiten in vielfach wiederholten Simulationsdurchgängen können Wahrscheinlichkeiten bestimmt und so der frequentistische Zugang gewählt werden.<sup>2</sup> Hier zahlt sich insbesondere der Computereinsatz für das häufige Wiederholen von Zufallsexperimenten aus. <br />
[[Thorsten Meyfarth|Meyfarth]] betont zudem das durch den Einsatz im Simulationen im Stochastikunterricht ein zweiter Zugang zum Wahrscheinlichkeitsbegriff möglich wird. Über relative Häufigkeiten in vielfach wiederholten Simulationsdurchgängen können Wahrscheinlichkeiten bestimmt und so der frequentistische Zugang gewählt werden [Meyfarth 2008 <sup>2</sup>, S. 16]. Hier zahlt sich insbesondere der Computereinsatz für das häufige Wiederholen von Zufallsexperimenten aus. <br />
    
    
[[Carmen Maxara|Maxara]] und [[Rolf Biehler|Biehler]] differenzieren die erste Klasse noch nach der Art des Werkzeugeinsatzes:<sup>4</sup>
[[Carmen Maxara|Maxara]] und [[Rolf Biehler|Biehler]] differenzieren die erste Klasse noch nach der Art des Werkzeugeinsatzes [Maxara 2008 <sup>4</sup>, S. 23-28]:
* '''Simulation zur Repräsentation von Zufallsexperimenten''': die Möglichkeit, Erfahrungen mit zufallsabhängigen Situationen zu sammeln und somit Grundlagen für „stochastisches Denken“ zu schaffen; Simulationen als Hilfe zum Aufbau eines konzeptuellen Verständnis stochastischer Ideen (Fokus mehr auf die eigentlichen Inhalte als auf formale Aspekte)   
* '''Simulation zur Repräsentation von Zufallsexperimenten''': die Möglichkeit, Erfahrungen mit zufallsabhängigen Situationen zu sammeln und somit Grundlagen für „stochastisches Denken“ zu schaffen; Simulationen als Hilfe zum Aufbau eines konzeptuellen Verständnis stochastischer Ideen (Fokus mehr auf die eigentlichen Inhalte als auf formale Aspekte)   
* '''Simulation im Wechselspiel mit analytischen Methoden''': Analytisch gewonnene Ergebnisse können durch Simulation überprüft werden, durch Simulation gewonnene Ergebnisse geben Anhaltspunkte für analytische Ansätze; Modellierung als ein verbindendes Element zwischen Simulation und theoretischen Methoden. Trauerstein vertritt die Hypothese, dass bei der Simulation die Modellbildung deutlicher und expliziter gemacht wird als bei einer theoretischen Lösung, da man bei der Simulation sich über Vereinfachungen und Annahmen Gedanken machen muss.
* '''Simulation im Wechselspiel mit analytischen Methoden''': Analytisch gewonnene Ergebnisse können durch Simulation überprüft werden, durch Simulation gewonnene Ergebnisse geben Anhaltspunkte für analytische Ansätze; Modellierung als ein verbindendes Element zwischen Simulation und theoretischen Methoden. Trauerstein vertritt die Hypothese, dass bei der Simulation die Modellbildung deutlicher und expliziter gemacht wird als bei einer theoretischen Lösung, da man bei der Simulation sich über Vereinfachungen und Annahmen Gedanken machen muss.
* '''Simulation als Werkzeug, als Methode sui generi''': Theoretisch anspruchsvolle, d. h. für den jeweiligen Lernstand mathematisch schwierig oder gar nicht zu lösende, Aufgaben können dennoch durch Simulation gelöst werden, da die Lösung mathematisch elementarer als eine analytische Lösung ist <br />
* '''Simulation als Werkzeug, als Methode sui generi''': Theoretisch anspruchsvolle, d. h. für den jeweiligen Lernstand mathematisch schwierig oder gar nicht zu lösende, Aufgaben können dennoch durch Simulation gelöst werden, da die Lösung mathematisch elementarer als eine analytische Lösung ist <br />


[[Hans Wolpers|Wolpers]] und [[Stefan Götz|Götz]] fassen die Gründe, die  für Simulationen als festen Bestandteil des Stochastikunterrichts sprechen, wie folgt zusammen:<sup>6</sup>
[[Hans Wolpers|Wolpers]] und [[Stefan Götz|Götz]] fassen die Gründe, die  für Simulationen als festen Bestandteil des Stochastikunterrichts sprechen, wie folgt zusammen: <sup>6</sup>
* Die Simulation ist ein wichtiges Verfahren zur Modellbildung in Theorie und Praxis   
* Die Simulation ist ein wichtiges Verfahren zur Modellbildung in Theorie und Praxis   
* Die Modellkonstruktion durch Simulation vermittelt epistemologische Einsichten in die  Rolle von Modellen bei der Mathematisierung von Ausschnitten der Realität, indem mit Hilfe von Simulationen Erfahrungen und Einsichten in den Zusammenhang von stochastischer Theorie und den empirischen Entsprechungen gewonnen werden können. Für die Aufhellung der Wechselbeziehung zwischen Empirie und Theorie sind insbesondere solche Probleme geeignet, deren Lösung analytisch und empirisch experimentell möglich ist.
* Die Modellkonstruktion durch Simulation vermittelt epistemologische Einsichten in die  Rolle von Modellen bei der Mathematisierung von Ausschnitten der Realität, indem mit Hilfe von Simulationen Erfahrungen und Einsichten in den Zusammenhang von stochastischer Theorie und den empirischen Entsprechungen gewonnen werden können. Für die Aufhellung der Wechselbeziehung zwischen Empirie und Theorie sind insbesondere solche Probleme geeignet, deren Lösung analytisch und empirisch experimentell möglich ist.
Zeile 37: Zeile 37:


==Forschungsergebnisse zum Einsatz von Simulationen im Stochastikunterricht==
==Forschungsergebnisse zum Einsatz von Simulationen im Stochastikunterricht==
Es existieren nur wenige empirische Untersuchungen zum Einsatz von Simulationen im Stochastikunterricht. Diese  deuten allerdings auf positive Effekte bei der Verwendung von Simulationen hin.<sup>2</sup> <br />
Es existieren nur wenige empirische Untersuchungen zum Einsatz von Simulationen im Stochastikunterricht. Diese  deuten allerdings auf positive Effekte bei der Verwendung von Simulationen hin [Meyfarth 2008 <sup>2</sup>, S.19]. <br />
Wollring untersuchte die Verwendung von  Simulationen zum 3-Türen- Problem in der sechsten Jahrgangstufe (ohne Computereinsatz). Er berichtet von einem deutlichen Abbau von Fehlvorstellungen durch das Modellieren der Spielsituation und  einer großen Akzeptanz der Simulationen bei den Schülern.<sup>7</sup>  <br />
Wollring untersuchte die Verwendung von  Simulationen zum 3-Türen- Problem in der sechsten Jahrgangstufe (ohne Computereinsatz). Er berichtet von einem deutlichen Abbau von Fehlvorstellungen durch das Modellieren der Spielsituation und  einer großen Akzeptanz der Simulationen bei den Schülern.<sup>7</sup>  <br />
In der Literaturübersicht von Mills wird von einem  positiven Effekt beim Einsatz von Simulationen insbesondere bei schwächeren Lernenden gesprochen. <sup>8</sup>  <br />
In der Literaturübersicht von Mills wird von einem  positiven Effekt beim Einsatz von Simulationen insbesondere bei schwächeren Lernenden gesprochen. <sup>8</sup>  <br />
In einer Vergleichsstudie von Lane-Getaz zum Einsatz der Statistiksoftware FATHOM an einer High-School in den USA wird von der Unterstützung bei der unterrichtlichen Vermittlung der Inhalte und einer Vertiefung des Verständnisses für die vermittelten statistischen Konzepte berichtet.<sup>9</sup>  <br />
In einer Vergleichsstudie von Lane-Getaz zum Einsatz der Statistiksoftware FATHOM an einer High-School in den USA wird von der Unterstützung bei der unterrichtlichen Vermittlung der Inhalte und einer Vertiefung des Verständnisses für die vermittelten statistischen Konzepte berichtet.<sup>9</sup>  <br />


Es kommen jedoch auch negative Konsequenzen zur Sprache. So erwähnen Hodgson und Burk, dass sie in ihren Forschungen herausgefunden haben, dass Simulationen nicht immer Fehlvorstellungen verhindern und sogar dazu beitragen können. <sup>2</sup> <br />
Es kommen jedoch auch negative Konsequenzen zur Sprache. So erwähnen Hodgson und Burk, dass sie in ihren Forschungen herausgefunden haben, dass Simulationen nicht immer Fehlvorstellungen verhindern und sogar dazu beitragen können [Meyfarth 2008 <sup>2</sup>, S. 20 ]. <br />
[[Thorsten Meyfarth|Meyfarth]] hält deshalb fest, dass der Einbettung der Simulation in das Kurskonzept eine entscheidende Rolle für den Erfolg des Einsatzes zukommt. Die Gestaltung der Lernumgebung, der Arbeitsaufträge und einer integrierten Einführung der verwendeten Software sowie das Aufgreifen und Sichern der in den Simulationsphasen vermittelten Kenntnisse und Fähigkeiten sind hier von Bedeutung. (Meyfarth 2008, S. )<sup>2</sup> <br />
[[Thorsten Meyfarth|Meyfarth]] hält deshalb fest, dass der Einbettung der Simulation in das Kurskonzept eine entscheidende Rolle für den Erfolg des Einsatzes zukommt. Die Gestaltung der Lernumgebung, der Arbeitsaufträge und einer integrierten Einführung der verwendeten Software sowie das Aufgreifen und Sichern der in den Simulationsphasen vermittelten Kenntnisse und Fähigkeiten sind hier von Bedeutung [Meyfarth 2008 <sup>2</sup>, S. 20-21]. <br />
Im Rahmen seiner Dissertation hat Meyfarth ein eigenes Unterrichtskonzept für den Leistungskurs Stochastik in der gymnasialen Oberstufe durchgeführt und ausgewertet. Dabei wurden Computersimulationen und Lernumgebungen mit der Software FATHOM über das gesamte Kurshalbjahr unterstützend eingesetzt. Im Mittelpunkt stand  der experimentelle Zugang zur Wahrscheinlichkeit. Zusammengefasst konnte er nach dem Simulationsvorkurs folgende Ergebnisse festhalten:
Im Rahmen seiner Dissertation hat Meyfarth ein eigenes Unterrichtskonzept für den Leistungskurs Stochastik in der gymnasialen Oberstufe durchgeführt und ausgewertet. Dabei wurden Computersimulationen und Lernumgebungen mit der Software FATHOM über das gesamte Kurshalbjahr unterstützend eingesetzt. Im Mittelpunkt stand  der experimentelle Zugang zur Wahrscheinlichkeit. Zusammengefasst konnte er nach dem Simulationsvorkurs folgende Ergebnisse festhalten [Meyfarth 2008 <sup>2</sup>, S. 250]:
* fast alle Schüler waren in der Lage, die erworbenen Simulations- und Fathomkompetenzen flexibel zur Lösung stochastischer Problemstellungen einzusetzen
* fast alle Schüler waren in der Lage, die erworbenen Simulations- und Fathomkompetenzen flexibel zur Lösung stochastischer Problemstellungen einzusetzen
* zentrale stochastische Grundbegriffe in Kombination mit den Computersimulationen konnten eingeführt werden
* zentrale stochastische Grundbegriffe in Kombination mit den Computersimulationen konnten eingeführt werden