Thomas Bardy: Unterschied zwischen den Versionen

[Markierung ausstehend][Markierung ausstehend]
 
Zeile 27: Zeile 27:
== Veröffentlichungen ==
== Veröffentlichungen ==
Bardy, T., & Fehlmann, R. (2022). Der optimale Einwurfwinkel: Ein adaptives Modellierungsproblem zum Fußball. mathematik lehren, H. 233, 37-40.  
Bardy, T., & Fehlmann, R. (2022). Der optimale Einwurfwinkel: Ein adaptives Modellierungsproblem zum Fußball. mathematik lehren, H. 233, 37-40.  
Bardy, T., Holzäpfel, L., & Leuders, T. (2021). Adaptive tasks as a differentiation strategy in the mathematics classroom–features from research and teachers’ views. Mathematics Teacher Education and Development, 23(3), 25-53.
Bardy, T., Holzäpfel, L., & Leuders, T. (2021). Adaptive tasks as a differentiation strategy in the mathematics classroom–features from research and teachers’ views. Mathematics Teacher Education and Development, 23(3), 25-53.
Bardy, T., & Bardy, P. (2020). Mathematisch begabte Kinder und Jugendliche–Theorie und (Förder-) Praxis. Springer Spektrum.
Bardy, T., & Bardy, P. (2020). Mathematisch begabte Kinder und Jugendliche–Theorie und (Förder-) Praxis. Springer Spektrum.
Bardy, T. (2019). Die Geschwindigkeit eines Ruderbootes im Verlauf eines Rennens–ein Beispiel mathematischen Modellierens für die Sek. II. In J. Maaß & I. Grafenhofer (Hrsg.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 6 (ISTRON-Schriftenreihe), 7-37. Springer Spektrum.
Bardy, T. (2019). Die Geschwindigkeit eines Ruderbootes im Verlauf eines Rennens–ein Beispiel mathematischen Modellierens für die Sek. II. In J. Maaß & I. Grafenhofer (Hrsg.), Neue Materialien für einen realitätsbezogenen Mathematikunterricht 6 (ISTRON-Schriftenreihe), 7-37. Springer Spektrum.
Bardy, T. (2015). Zur Herstellung von Geltung mathematischen Wissens im Mathematikunterricht. Springer Spektrum.
Bardy, T. (2015). Zur Herstellung von Geltung mathematischen Wissens im Mathematikunterricht. Springer Spektrum.


19

Bearbeitungen