Zur Dialektik von Kohärenzerlebnissen und Differenzerfahrungen: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 48: Zeile 48:
*Vohns A. (2013): Zur Bedeutung mathematischer Handlungen im Bildungsprozess und als Bildungsprodukte. In: M. Rathgeb, M. Helmerich, R. Krömer, K. Lengnink, G. Nickel (Hrsg.): Mathematik im Prozess. Philosophische, Historische und Didaktische Perspektiven, S. 319-333.   
*Vohns A. (2013): Zur Bedeutung mathematischer Handlungen im Bildungsprozess und als Bildungsprodukte. In: M. Rathgeb, M. Helmerich, R. Krömer, K. Lengnink, G. Nickel (Hrsg.): Mathematik im Prozess. Philosophische, Historische und Didaktische Perspektiven, S. 319-333.   
* Vohns A. (2012): Grundprinzipien des Messens. Erkunden – Vernetzen – Reflektieren. In: mathematik lehren, S. 20-24.  
* Vohns A. (2012): Grundprinzipien des Messens. Erkunden – Vernetzen – Reflektieren. In: mathematik lehren, S. 20-24.  
* Vohns A. (2013): Von der Vektorrechnung zum reflektierten Umgang mit Vektoren. In: H. Allmendinger, K. Lengnink, A. Vohns, G. Wickel (Hrsg.): Mathematik verständlich unterrichten – Perspektiven für Unterricht und Lehrerbildung, S. 147-166.
* Vohns A. (2013): Von der Vektorrechnung zum reflektierten Umgang mit Vektoren. In: [[Henrike Allmendinger|H. Allmendinger]], K. Lengnink, A. Vohns, G. Wickel (Hrsg.): Mathematik verständlich unterrichten – Perspektiven für Unterricht und Lehrerbildung, S. 147-166.
* Vohns A. (2013): Algebraisieren erleben und reflektieren – Dreickstransversalen und besondere Punkte. In: Praxis der Mathematik in der Schule (PM), *S. 37-41.
* Vohns A. (2013): Algebraisieren erleben und reflektieren – Dreickstransversalen und besondere Punkte. In: Praxis der Mathematik in der Schule (PM), *S. 37-41.


=== Links ===
=== Links ===
<!-- ggf. Literaturangaben -->
<!-- ggf. Literaturangaben -->