Modellbilden – eine zentrale Leitidee der Mathematik: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
Keine Bearbeitungszusammenfassung
KKeine Bearbeitungszusammenfassung
Zeile 48: Zeile 48:
           die sich mit dem Thema beschäftigen, etc. -->
           die sich mit dem Thema beschäftigen, etc. -->
===Literatur===
===Literatur===
* [[Werner Blum]], [[G. Törner]]: Didaktik der Analysis, Moderne Mathematik in elementarer Darstellung 20, Vandenhoeck und Ruprecht, 1983
* [[Werner Blum|Blum, W.]], [[Günter Törner|Törner, G.]]: Didaktik der Analysis, Moderne Mathematik in elementarer Darstellung 20, Vandenhoeck und Ruprecht, 1983
* [[H. Hischer]]: Modellbildung, Computer und Mathematikunterricht, Hildesheim, Berlin, Franzbecker, 2000, S. 5-6
* [[Horst Hischer|Hischer, H.]]: Modellbildung, Computer und Mathematikunterricht, Hildesheim, Berlin, Franzbecker, 2000, S. 5-6
* [[J. Humenberger]]; Reichel, H.-Ch.: Fundamentale Ideen der angewandten Mathematik und ihre Umsetzung im Unterricht. BI-Wiss.-Verl., Mannheim; Leipzig; Wien; Zürich, 1995
* [[Hans Humenberger|Humenberger, H.]]; [[Hans-Christain Reichel|Reichel, H.-Ch.]]: Fundamentale Ideen der angewandten Mathematik und ihre Umsetzung im Unterricht. BI-Wiss.-Verl., Mannheim; Leipzig; Wien; Zürich, 1995
* [[A. Poltschak]]: Interdisziplinäre Unterrichtsansätze in Musik und Mathematik: Theoretische Grundlagen und praktische Modelle (Diplomarbeit), Salzburg, 2005
* [[Angela Poltschak|Poltschak, A.]]: Interdisziplinäre Unterrichtsansätze in Musik und Mathematik: Theoretische Grundlagen und praktische Modelle (Diplomarbeit), Salzburg, 2005
* [[F. Schweiger]]: Stetigkeit – eine ´fundamentale Idee´ der Mathematik, Mathematik im Unterricht, S. 1., 8/1984
* [[Fritz Schweiger|Schweiger, F.]]: Stetigkeit – eine ´fundamentale Idee´ der Mathematik, Mathematik im Unterricht, S. 1., 8/1984
* [[H.-St. Siller]]: Auf Mathematica basierende Lerneinheiten zur fundamentalen Idee der Modellbildung illustriert an Extremwertbeispielen und Beispielen der Integralrechnung mit M@th Desktop. Diplomarbeit, Graz, 2002
* [[H.-St. Siller]]: Auf Mathematica basierende Lerneinheiten zur fundamentalen Idee der Modellbildung illustriert an Extremwertbeispielen und Beispielen der Integralrechnung mit M@th Desktop. Diplomarbeit, Graz, 2002
* [[H.-St. Siller]] [[K.J. Fuchs]]: Modellbilden bei Extremwertaufgaben, PM, H. 2, 2004, S. 49–54
* [[H.-St. Siller]] [[K.J. Fuchs]]: Modellbilden bei Extremwertaufgaben, PM, H. 2, 2004, S. 49–54
* [[H.-G. Weigand]], [[H. Weller]]: Das Lösen realitätsorientierter Aufgaben zu periodischen Vorgängen mit Computeralgebra. In: ZDM Heft 5, 1997, S. 162–169
* [[H.-G. Weigand]], [[H. Weller]]: Das Lösen realitätsorientierter Aufgaben zu periodischen Vorgängen mit Computeralgebra. In: ZDM Heft 5, 1997, S. 162–169
*Modellbilden – eine zentrale Leitidee der Mathematik (Fuchs, KJ Hrsg.), 256S., ISBN: 978-3-8322-7211-1
*Modellbilden – eine zentrale Leitidee der Mathematik (Fuchs, KJ Hrsg.), 256S., ISBN: 978-3-8322-7211-1