1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
Keine Bearbeitungszusammenfassung |
Keine Bearbeitungszusammenfassung |
||
Zeile 4: | Zeile 4: | ||
: Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br /> | : Es sei <math>f</math> eine [[Funktion:_mengentheoretische_Auffassung|Funktion]] von der ''Argumentmenge'' <math>A</math> in die ''Zielmenge'' <math>B</math>, kurz: <math>f\,:A\to B</math>.<br /> | ||
: Dann ist der '''[[Funktion:_mengentheoretische_Auffassung#Funktionsgraph_2|Funktionsgraph]]''' von <math>f</math> durch <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> definiert.<br /> | : Dann ist der '''[[Funktion:_mengentheoretische_Auffassung#Funktionsgraph_2|Funktionsgraph]]''' von <math>f</math> durch <math>{{\operatorname{G}}_{f}}:=\{(x,f(x))|x\in A\}</math> definiert.<br /> | ||
Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>.<br /> | Der Funktionsgraph einer ([[Funktion:_mengentheoretische_Auffassung#einstellige Funktion|einstelligen]]) Funktion [math]f[/math] von <math>A</math> in <math>B</math> besteht also aus allen geordneten Paaren <math>(x,f(x))</math> mit <math>x\in A</math> und <math>f(x)\in B</math>. (Dabei ist <math>A</math> die ''Definitionsmenge'' von <math>f</math>, die kurz mit <math>{{\operatorname{D}}_{f}}</math> bezeichnet wird.)<br /> | ||
<br /> | |||
Die Einschränkung auf einstellige Funktionen ist nicht notwendig, wenngleich aber in den meisten unterrichtsrelevanten Fällen üblich. | |||
== Visualisierung von Funktionsgraphen == | == Visualisierung von Funktionsgraphen == | ||
* Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert. | * Funktionsgraphen lassen sich z. B. in einem kartesischen [[Koordinatensystem]] visualisieren, indem die geordneten Paare <math>(x,f(x))</math> durch „Punkte“ (naiv zu verstehen!) mit der „Abszisse“ <math>x</math> (nach rechts auf der ''Rechtsachse'' bzw. der ''1. Koordinatenachse'') und der „Ordinate“ <math>f(x)</math> (nach oben auf der ''Hochachse'' bzw. der ''2. Koordinatenachse'') abgetragen werden. Insbesondere Funktionsgraphen reeller Funktionen werden auf diese Weise visualisiert. |