Frank Schumann/Publikationen: Unterschied zwischen den Versionen

K
keine Bearbeitungszusammenfassung
[gesichtete Version][gesichtete Version]
KKeine Bearbeitungszusammenfassung
(3 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 36: Zeile 36:
* '''Raumdiagonale im Quader'''. Mit Hilfe des Satzes des Pythagoras werden Flächen- und Raumdiagonale im Quader berechnet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Raumdiagonale im Quader'''. Mit Hilfe des Satzes des Pythagoras werden Flächen- und Raumdiagonale im Quader berechnet. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''64 gleich 65'''. Die Zahlen 3, 5, 8 und 13 sind Glieder der Fibonacci-Folge. Als Seitenlängen bauen Sie Dreiecke, Trapeze, ein Quadrat und ein Rechteck auf. Beim Umlegen eines Quadrates zu einem Rechteck werden dessen Flächeninhalte verglichen. Es entsteht die Gleichung 64=65. Die Frage, worin liegt der Denkfehler wird zur indirekten Herausforderung dieses Lernvideos.
* '''64 gleich 65'''. Die Zahlen 3, 5, 8 und 13 sind Glieder der Fibonacci-Folge. Als Seitenlängen bauen Sie Dreiecke, Trapeze, ein Quadrat und ein Rechteck auf. Beim Umlegen eines Quadrates zu einem Rechteck werden dessen Flächeninhalte verglichen. Es entsteht die Gleichung 64=65. Die Frage, worin liegt der Denkfehler wird zur indirekten Herausforderung dieses Lernvideos.
====Binomialverteilung====
* '''Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung'''. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.
* '''Varianz und Standardabweichung'''. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Minilotto "3 aus 7"'''. Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.
* '''Der Binominalkoeffizient "n über k"'''. Es wird der Binomialkoeffizient explizit und rekursiv definiert und der Zusammenhang zu Binomen hergestellt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Das Bernoulli-Experiment'''. Es wird in des Modell des Bernoulli-Experimentes eingeführt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Bernoulli-Ketten der Länge n=2'''. Es wird exemplarisch der Begriff der Bernoulli-Kette der Länge n=2 eingeführt. Als Demonstrationsbeispiel dient ein einfaches Würfelspiel. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Bernoulli-Ketten und die Rekursion von n=3 auf n=2'''. Es wird die Technik der Rekursion auf Bernoulli-Ketten der Länge n=3 angewendet, um Wahrscheinlichkeiten für verschiedene Trefferzahlen zu definieren.
* '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.
* '''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Modul „Verteilung“'''. Im Lernvideo wird an einer Beispielsaufgabe zur Binomialverteilung gezeigt, wie man diese mit dem Modul „Statistik/Verteilung“ aus GeoGebra rechnerisch lösen kann.


====Einführung in die Differenzialrechnung====
====Einführung in die Differenzialrechnung====
Zeile 65: Zeile 53:
* '''Extremwertaufgabe (ohne Nebenbedingungen)'''. Im Lernvideo wird eine einfache Extremwertaufgabe, ohne Nebenbedingung, in 4 Schritten rechnerisch gelöst. Animationen unterstützen die Anschauung zur Lösungsfindung. Für das weitere Üben zum Lösen von Extremwertaufgaben wird die Ausgangsaufgabe variiert, indem der rechte Rand des Definitionsbereiches der Zielfunktion verändert wird. Dabei entstehen lokale Extrema, die in der Ausgangsaufgabe noch nicht existent waren.
* '''Extremwertaufgabe (ohne Nebenbedingungen)'''. Im Lernvideo wird eine einfache Extremwertaufgabe, ohne Nebenbedingung, in 4 Schritten rechnerisch gelöst. Animationen unterstützen die Anschauung zur Lösungsfindung. Für das weitere Üben zum Lösen von Extremwertaufgaben wird die Ausgangsaufgabe variiert, indem der rechte Rand des Definitionsbereiches der Zielfunktion verändert wird. Dabei entstehen lokale Extrema, die in der Ausgangsaufgabe noch nicht existent waren.


====Exponentialfunktionen | ganzrationale Funktionen====
====Exponentialfunktionen und ganzrationale Funktionen====
* '''Exponentialfunktionen'''. Im Lernvideo werden die Eigenschaften Monotonie und Nicht-Existenz von Nullstellen von Exponentialfunktionen zur Basis a mit f(x) = a^x  aus Sätzen (mit Beweis) deduziert. Außerdem wird illustriert, warum die x-Achse eine Asymptote ist. Am Ende des Lernvideos werden zwei einfache Aufgaben gelöst, um den Umgang mit der Funktionsgleichung f(x) = c * a^x  zu festigen.
* '''Exponentialfunktionen'''. Im Lernvideo werden die Eigenschaften Monotonie und Nicht-Existenz von Nullstellen von Exponentialfunktionen zur Basis a mit f(x) = a^x  aus Sätzen (mit Beweis) deduziert. Außerdem wird illustriert, warum die x-Achse eine Asymptote ist. Am Ende des Lernvideos werden zwei einfache Aufgaben gelöst, um den Umgang mit der Funktionsgleichung f(x) = c * a^x  zu festigen.
* '''Polynomdivision'''. Im Lernvideo werden die Polynomdivision und das Horner-Schema als alternative Rechenverfahren vorgestellt und in ihrer Ausführung erläutert. Computeralgebrasystem- (CAS) und Tabellenkalkulations-Applikationen (TK) unterstützen das Üben zum Erlernen beider Routinen.
* '''Polynomdivision'''. Im Lernvideo werden die Polynomdivision und das Horner-Schema als alternative Rechenverfahren vorgestellt und in ihrer Ausführung erläutert. Computeralgebrasystem- (CAS) und Tabellenkalkulations-Applikationen (TK) unterstützen das Üben zum Erlernen beider Routinen.
Zeile 86: Zeile 74:
* '''Beweisen mit den Kongruenzsätzen'''. Im Lernvideo wird in einem gleichseitigen Dreieck ein Innendreieck festgelegt. Von diesem wird behauptet, dass es auch gleichseitig sei. Es folgt ein ausführlicher Beweistext mit Übungen. Jeder Schritt soll schließlich verstanden und an einer Skizze nachvollzogen werden. Der Beweistext dient als exemplarische Vorlage für andere Beweise, die im Unterricht geübt werden. Dieser Beweistext ist vor den Übungen im Unterricht zu lernen.
* '''Beweisen mit den Kongruenzsätzen'''. Im Lernvideo wird in einem gleichseitigen Dreieck ein Innendreieck festgelegt. Von diesem wird behauptet, dass es auch gleichseitig sei. Es folgt ein ausführlicher Beweistext mit Übungen. Jeder Schritt soll schließlich verstanden und an einer Skizze nachvollzogen werden. Der Beweistext dient als exemplarische Vorlage für andere Beweise, die im Unterricht geübt werden. Dieser Beweistext ist vor den Übungen im Unterricht zu lernen.


====Kreis- und Körperberechnungen====
====Kreisberechnungen und Körperberechnungen====
* '''Kreiszahl Pi approximieren'''. Im Lernvideo wird die Kreiszahl Pi approximiert. Zunächst wird die Lösungsidee für die Approximation geometrisch durch Dynamisierung regelmäßiger Polygone am Kreis veranschaulicht. Anschließend werden analytische Ausdrücke zur Berechnung von Polygonumfängen ermittelt und zur Approximation der Zahl Pi genutzt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Kreiszahl Pi approximieren'''. Im Lernvideo wird die Kreiszahl Pi approximiert. Zunächst wird die Lösungsidee für die Approximation geometrisch durch Dynamisierung regelmäßiger Polygone am Kreis veranschaulicht. Anschließend werden analytische Ausdrücke zur Berechnung von Polygonumfängen ermittelt und zur Approximation der Zahl Pi genutzt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.
* '''Kreisteile'''. Im Lernvideo werden in GeoGebra Abhängigkeiten von Größen beschrieben, um Gleichungen herzustellen, mit deren Hilfe man die Bogenlänge eines Kreisbogens bzw. den Flächeninhalt eines Kreissektors berechnen kann.
Zeile 139: Zeile 127:
* '''Senkung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem verminderten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Senkung auf p%'''. Eine typische Anwendungsaufgabe zur Prozentrechnung beschäftigt sich mit dem verminderten Grundwert. Es wird eine Aufgabe analysiert und die Bedeutung der Signalwörter "um" und "auf" erläutert und schließlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.


====Punkte | Vektoren | Geraden====
====Punkte, Vektoren und Geraden====
* '''Punkte im Raum (3D)'''. Im Lernvideo wird die Lage eines Raumpunktes P in einem x-y-z-Koordinatensystem beschrieben. Zusätzlich zu den Erläuterungen im Lehrbuch zum Zeichnen von Punkten mit drei Koordinaten auf Papier unterstützt dieses Video die 3D-Darstellung von Punkten und Strecken im Raum durch verschiedenartige Perspektivwechsel in GeoGebra. Es folgen Hinweise zur Lösung der Frage: Wie bestimmt man den Abstand eines Raumpunktes P zum Ursprung O des x-y-z-Koordinatensystems?
* '''Punkte im Raum (3D)'''. Im Lernvideo wird die Lage eines Raumpunktes P in einem x-y-z-Koordinatensystem beschrieben. Zusätzlich zu den Erläuterungen im Lehrbuch zum Zeichnen von Punkten mit drei Koordinaten auf Papier unterstützt dieses Video die 3D-Darstellung von Punkten und Strecken im Raum durch verschiedenartige Perspektivwechsel in GeoGebra. Es folgen Hinweise zur Lösung der Frage: Wie bestimmt man den Abstand eines Raumpunktes P zum Ursprung O des x-y-z-Koordinatensystems?
* '''Vektor'''. Im Lernvideo werden die Grundlagen für einen anschaulichen Vektorbegriff gelegt und gefestigt, wie: die Menge von Pfeilen mit gleicher Länge, gleicher Richtung und gleichem Richtungssinn … (in der Ebene), dem Ortsvektor, der Spaltenschreibweise und dem Verbindungsvektor aus zwei Punkten.
* '''Vektor'''. Im Lernvideo werden die Grundlagen für einen anschaulichen Vektorbegriff gelegt und gefestigt, wie: die Menge von Pfeilen mit gleicher Länge, gleicher Richtung und gleichem Richtungssinn … (in der Ebene), dem Ortsvektor, der Spaltenschreibweise und dem Verbindungsvektor aus zwei Punkten.
Zeile 160: Zeile 148:
* '''Multiplikation von Bruchzahlen'''. Es wird das Thema Miltiplizieren von Brüchen aus Q behandelt. Ausgewählte Rechenaufgaben werden hierzu ausführlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Multiplikation von Bruchzahlen'''. Es wird das Thema Miltiplizieren von Brüchen aus Q behandelt. Ausgewählte Rechenaufgaben werden hierzu ausführlich gelöst. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.


====Stochastik allgemein====
====Stochastik (Wahrscheinlichkeitsrechnung)====
* '''Das Gesetz der großen Zahlen'''. Im Lernvideo werden folgende Begriffe erläutert: Zufallsversuch, Urliste, absolute Häufigkeit, Häufigkeitstabelle, relative Häufigkeit, Häufigkeitsverteilung und Histogramm. Das empirische Gesetz der großen Zahlen wird an zwei computersimulierten Zufallsversuchen (Werfen mit einem Würfel  und Reißnagelwurf) illustriert und angewendet. Es werden dabei Wahrscheinlichkeiten experimentell durch Computersimulationen bestätigt und geschätzt.
* '''Baumdiagramm mit Pfad- und Summenregel'''. Im Lernvideo werden zum Lösen von Aufgaben mit mehrstufigen Zufallsversuchen begriffliche Grundlagen geschaffen. Es werden folgende Begriffe in konkreten Anwendungen erläutert: Ereignis, Ergebnismenge, Sicheres Ereignis, Leere Menge als Ereignis, Mehrstufiger Zufallsversuch, Baumdiagramm, Ziehen ohne Zurücklegen, Pfadregel und Summenregel. Es werden heuristische Lesetechniken illustriert, die den Prozess zu einem besseren Aufgabenverständnis vorantreiben können.
* '''Das kurze Streichholz'''. Im Lernvideo werden am Beispiel des Spiels: „Wer zieht zuerst das kurze Streichholz“ die Begriffe: Vorgang mit zufälligem Ergebnis, mehrstufiger Zufallsversuch, Baumdiagramm, Ziehen ohne Zurücklegen, Pfadregel (Multiplikationsregel) und die Wahrscheinlichkeitsverteilung angewendet.
* '''Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung'''. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.
* '''Grundbegriffe der Wahrscheinlichkeitsrechnung - eine Zusammenfassung'''. Es werden verschiedene Grundbegriffe der Wahrscheinlichkeitsrechnung, wie z.B. Zufallsversuch, Wahrscheinlichkeit und Erwartungswert einer Zufallsgröße in kompakter Form definiert und an einigen einfachen Beispielen illustriert.
* '''Das Gesetz der großen Zahlen'''. Im Lernvideo werden folgende Begriffe erläutert: Zufallsversuch, Urliste, absolute Häufigkeit, Häufigkeitstabelle, relative Häufigkeit, Häufigkeitsverteilung und Histogramm. Das empirische Gesetz der großen Zahlen wird an zwei computersimulierten Zufallsversuchen (Werfen mit einem Würfel  und Reißnagelwurf) illustriert und angewendet. Es werden dabei Wahrscheinlichkeiten experimentell durch Computersimulationen bestätigt und geschätzt.
* '''Varianz und Standardabweichung'''. An verschiedenen Wahrscheinlichkeitsverteilungen werden die Begriffe Varianz und Standardabweichung erläutert. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Das kurze Streichholz'''. Im Lernvideo wird am Beispiel des Spiels: „Wer zieht zuerst das kurze Streichholz“ die Begriffe: Vorgang mit zufälligem Ergebnis, mehrstufiger Zufallsversuch, Baumdiagramm, Ziehen ohne Zurücklegen, Pfadregel (Multiplikationsregel) und die Wahrscheinlichkeitsverteilung eingeführt.
* '''Minilotto "3 aus 7"'''. Es wird ein kombinatorisches Problem mit dem Modell "Ziehen ohne Zurücklegen" am Beispiel "Minilotto 3 aus 7" erörtert. In diesem Zusammenhang wird exemplarisch der Binomialkoeffizient "7 über 3" in seiner Bedeutung erläutert.
* '''Der Binominalkoeffizient "n über k"'''. Es wird der Binomialkoeffizient explizit und rekursiv definiert und der Zusammenhang zu Binomen hergestellt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Das Bernoulli-Experiment'''. Es wird in des Modell des Bernoulli-Experimentes eingeführt. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Bernoulli-Ketten der Länge n=2'''. Es wird exemplarisch der Begriff der Bernoulli-Kette der Länge n=2 eingeführt. Als Demonstrationsbeispiel dient ein einfaches Würfelspiel. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Bernoulli-Ketten und die Rekursion von n=3 auf n=2'''. Es wird die Technik der Rekursion auf Bernoulli-Ketten der Länge n=3 angewendet, um Wahrscheinlichkeiten für verschiedene Trefferzahlen zu definieren.
* '''Bernoulli-Formeln und Anwendungen'''. Das Modell der Bernoulliketten mit der Länge n, der Trefferzahl k und der Erfolgswahrscheinlichkeit p wird durch die Bernoulligleichung beschrieben und in einem Geogebra-Arbeitsblatt simuliert. Im Weiteren wird der Begriff der binomialverteilten Zufallsgröße eingeführt und der Wahrscheinlichkeitsrechner in Geogebra am Beispiel der Binomialverteilungen vorgestellt.
* '''Eigenschaften der Binomialverteilung - dein Projekt'''. Vorgestellt wird ein Anleitungsvideo für eine kleine Projektaufgabe zum Thema Eigenschaften der Binomialverteilung mit den Parametern Länge n und Trefferwahrscheinlichkeit p. Außerdem wird gezeigt, wie man den Befehl Binomial benutzt und die Online-Hilfe eines Geogebra-Wiki zu Rate ziehen kann.Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Modul „Verteilung“'''. Im Lernvideo wird an einer Beispielsaufgabe zur Binomialverteilung gezeigt, wie man diese mit dem Modul „Statistik/Verteilung“ aus GeoGebra rechnerisch lösen kann.


====Terme | Gleichungen | Ungleichungen====
====Terme, Gleichungen und Ungleichungen====
* '''Term und Termwert'''. Die Begriffe Term und Termwert werden in diesem Video exemplarisch eingeführt. Durch Anwendungen in Geogebra werden diese Begriffe abgegrenzt und verstärkt.
* '''Term und Termwert'''. Die Begriffe Term und Termwert werden in diesem Video exemplarisch eingeführt. Durch Anwendungen in Geogebra werden diese Begriffe abgegrenzt und verstärkt.
* '''Äquivalente Terme und Rechengesetze'''. Im Video wird das Umformen von Termen exemplarisch im CAS von Geogebra eingeführt und auf die Rechengesetze: Kommutativgesetz, Assoziativgesetz und Distributivgesetz der Addition (Multiplikation) rationaler Zahlen zurückgeführt. Zwei Geogebradateien motivieren das Üben zum Umformen von Termen.
* '''Äquivalente Terme und Rechengesetze'''. Im Video wird das Umformen von Termen exemplarisch im CAS von Geogebra eingeführt und auf die Rechengesetze: Kommutativgesetz, Assoziativgesetz und Distributivgesetz der Addition (Multiplikation) rationaler Zahlen zurückgeführt. Zwei Geogebradateien motivieren das Üben zum Umformen von Termen.
447

Bearbeitungen