Frank Schumann/Publikationen: Unterschied zwischen den Versionen

K
[gesichtete Version][gesichtete Version]
Zeile 90: Zeile 90:
* '''Eine spezielle quadratische Funktion'''. Im Lernvideo wird die quadratische Funktion mit der Gleichung  y = a* x^2 behandelt. Es werden 4 Eigenschaften der Funktion genannt.
* '''Eine spezielle quadratische Funktion'''. Im Lernvideo wird die quadratische Funktion mit der Gleichung  y = a* x^2 behandelt. Es werden 4 Eigenschaften der Funktion genannt.
* '''Parameter einer linearen Funktion'''. Im Lernvideo werden die beiden Parameter: „Steigung“ und „Ordinatenabschnitt“ linearer Funktionen sowie der Begriff „allgemeine Form linearer Funktionsgleichungen“ eingeführt. Es folgen zwei Aufgaben zur Untersuchung des Einflusses der beiden Parameter m und n auf den Graphen der jeweiligen linearen Funktionen. GeoGebra-Arbeitsblätter unterstützen mit ihren interaktiven Anwendungsmöglichkeiten die Lösungen der beiden experimentellen Aufgaben.
* '''Parameter einer linearen Funktion'''. Im Lernvideo werden die beiden Parameter: „Steigung“ und „Ordinatenabschnitt“ linearer Funktionen sowie der Begriff „allgemeine Form linearer Funktionsgleichungen“ eingeführt. Es folgen zwei Aufgaben zur Untersuchung des Einflusses der beiden Parameter m und n auf den Graphen der jeweiligen linearen Funktionen. GeoGebra-Arbeitsblätter unterstützen mit ihren interaktiven Anwendungsmöglichkeiten die Lösungen der beiden experimentellen Aufgaben.
* '''Quadratische Gleichungen lösen'''. In diesem Lernvideo werden zwei Verfahren für das Lösen einfacher quadratischer Gleichung vorgestellt und illustriert. Dabei wird für das exakte Lösungsverfahren die p-q-Formel vorgestellt und angewendet. Beim approximierten Lösungsverfahren wird die Normalparabel mit der Geraden aus dem linearen Rest-Term geschnitten. Auf die Verwendung der Schülerschablone wird hingewiesen.
* '''Quadratische Gleichungen lösen'''. In diesem Lernvideo werden zwei Verfahren für das Lösen einfacher quadratischer Gleichungen vorgestellt und illustriert. Dabei wird für das exakte Lösungsverfahren die p-q-Formel vorgestellt und angewendet. Beim approximierten Lösungsverfahren wird die Normalparabel mit der Geraden aus dem linearen Rest-Term geschnitten. Auf die Verwendung der Schülerschablone wird hingewiesen.


====Planimetrie====
====Planimetrie====
447

Bearbeitungen