Arbeitskreis Interpretative Forschung: Unterschied zwischen den Versionen

[unmarkierte Version][unmarkierte Version]
(Struktur optimiert)
Zeile 10: Zeile 10:
Weitere Informationen sind demnächst hier verfügbar.
Weitere Informationen sind demnächst hier verfügbar.


==Entwicklung:==
Aus einer Kritik an den herrschenden Forschungsprogrammen der Unterrichtsforschung heraus hat Terhart 1978 den Begriff der ''Interpretativen Unterrichtsforschung'' geprägt und diesen mit einer symbolisch-interaktionistischen Konzeptualisierung begründet. Der im selben Jahr erschienene Aufsatz  „Kommunikationsmuster im Mathematikunterricht – Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung“ (Bauersfeld 1978), in dem Heinrich Bauersfeld das ''Trichtermuster'' als eine von Lehrperson und Lernenden gemeinsam hervorgebrachte Stereotype der Unterrichtswirklichkeit beschreibt, kann als der Anfang der interpretativen Unterrichtsforschung in der deutschsprachigen Mathematikdidaktik gesehen werden. Die Bielefelder Arbeitsgruppe um Bauersfeld am IDM hat sich in der Folge mit ersten Fallstudien der Eigengesetzlichkeit des schulischen Alltags genähert und dabei auch die methodologische und methodische Auseinandersetzung mit der Entwicklung wissenschaftlicher Begriffe und Konzepte aus dem konkreten Feld heraus in der Mathematikdidaktik vorangetrieben. Dieser damals neue Forschungsansatz wurde bald von weiteren Forschungsgruppen in der Mathematikdidaktik aufgegriffen, und es entstand eine bundesweit agierende Arbeitsgruppe ''Interpretative Unterrichtsforschung'', die sich ab Mitte der 80’er Jahre des letzten Jahrhunderts regelmäßige auf Arbeitstagungen zu gemeinsamen Interpretationssitzung unterschiedlicher Unterrichtsmitschnitte traf. <br />
== Zielsetzung ==
== Zielsetzung ==
Aus einer Kritik an den herrschenden Forschungsprogrammen der Unterrichtsforschung heraus hat Terhart 1978 den Begriff der „Interpretativen Unterrichtsforschung“ geprägt und diesen mit einer symbolisch-interaktionistischen Konzeptualisierung begründet. Der im selben Jahr erschienene Aufsatz  „Kommunikationsmuster im Mathematikunterricht – Eine Analyse am Beispiel der Handlungsverengung durch Antworterwartung.“ , in dem Heinrich Bauersfeld das „Trichtermuster“ als eine von Lehrperson und Lernenden gemeinsam hervorgebrachte Stereotype der Unterrichtswirklichkeit beschreibt, kann als der Anfang der interpretativen Unterrichtsforschung in der deutschsprachigen Mathematikdidaktik gesehen werden. Die Bielefelder Arbeitsgruppe um Bauersfeld am IDM hat sich in der Folge mit ersten Fallstudien der Eigengesetzlichkeit des schulischen Alltags genähert und dabei auch die methodologische und methodische Auseinandersetzung mit der Entwicklung wissenschaftlicher Begriffe und Konzepte aus dem konkreten Feld heraus in der Mathematikdidaktik vorangetrieben. Dieser damals neue Forschungsansatz wurde bald von weiteren Forschungsgruppen in der Mathematikdidaktik aufgegriffen, und es entstand eine bundesweit agierende Arbeitsgruppe „Interpretative Unterrichtsforschung“, die sich ab Mitte der 80’er Jahre des letzten Jahrhunderts regelmäßige auf Arbeitstagungen zu gemeinsamen Interpretationssitzung unterschiedlicher Unterrichtsmitschnitte traf. <br />
Der  Arbeitskreis ''"Interpretative Forschung der Mathematikdidaktik'' als offizielles Organ der GDM sieht sich dieser Tradition verpflichtet und möchte insbesondere auch den wissenschaftlichen Anspruch empirisch gegründeter Theoriebildung mit Nachdruck vertreten:
Der  Arbeitskreis „Interpretative Forschung der Mathematikdidaktik“ als offizielles Organ der GDM sieht sich dieser Tradition verpflichtet und möchte insbesondere auch den wissenschaftlichen Anspruch empirisch gegründeter Theoriebildung mit Nachdruck vertreten:
''Ihre Leistungsfähigkeit sehen wir in ihrer spezifischen, soziologisch orientierten Perspektive begründet, die geeignet ist, den Mathematikunterricht ohne Wenn und Aber als banales soziales Ereignis wahrnehmbar zu machen. Sie führt zu Theorien mit großem empirischen, kontextbezogenen Gehalt, die sich bewusst von Theorieentwicklungen  mit möglichst globalem, dekontextualisiertem Geltungsanspruch distanziert."'' (Jungwirth/Krummheuer 2006, 8)<br />  
''Ihre Leistungsfähigkeit sehen wir in ihrer spezifischen, soziologisch orientierten Perspektive begründet, die geeignet ist, den Mathematikunterricht ohne Wenn und Aber als banales soziales Ereignis wahrnehmbar zu machen. Sie führt zu Theorien mit großem empirischen, kontextbezogenen Gehalt, die sich bewusst von Theorieentwicklungen  mit möglichst globalem, dekontextualisiertem Geltungsanspruch distanziert.'' (Jungwirth/Krummheuer 2006, 8)<br />
===Denkrahmen===
Interpretative Forschung versteht sich als „Denkrahmen“ und bietet einen spezifischen „theoretischen Zugriff auf die Welt“ (ebd.,), der den Forschungsprozess in der Konzeptualisierung des Forschungsgegenstandes und der methodischen Annäherung an denselben vorstrukturiert. Dieser Denkrahmen ist dabei dem jeweils konkreten Forschungsgegenstand anzupassen – der Ansatz ist somit nicht auf bestimmte mathematische Inhaltsfelder oder Altersstufen der Lernenden begrenzt und ist offen für viele Themen und Fragen. Gemeinsam ist jedoch die interpretative Grundhaltung im Sinne des Symbolischen Interaktionismus, der im Laufe der nun über 30-jährigen Geschichte je nach Verortung der Praxis oder Zielrichtung der Begriffsentwicklung durch weitere theoretische Konzepte erweitert und ergänzt wurde. Um dem postulierten Ziel des wissenschaftlichen Anspruchs gerecht zu werden, besteht eine Zielsetzung des Arbeitskreises „Interpretative Forschung“ in einer Auseinandersetzung mit den Verflechtungen und Verträglichkeiten theoretischer Basiskonzepte und „Denkfiguren“ für die mathematikdidaktische Forschung. Diese methodologische Diskussion soll in enger Beziehung zum wissenschaftlichen Diskurs außerhalb der mathematikdidaktischen Forschung geführt werden.
Interpretative Forschung versteht sich als ''Denkrahmen'' und bietet einen spezifischen „theoretischen Zugriff auf die Welt“ (ebd.,), der den Forschungsprozess in der Konzeptualisierung des Forschungsgegenstandes und der methodischen Annäherung an denselben vorstrukturiert. Dieser Denkrahmen ist dabei dem jeweils konkreten Forschungsgegenstand anzupassen – der Ansatz ist somit nicht auf bestimmte mathematische Inhaltsfelder oder Altersstufen der Lernenden begrenzt und ist offen für viele Themen und Fragen. Gemeinsam ist jedoch die interpretative Grundhaltung im Sinne des Symbolischen Interaktionismus, der im Laufe der nun über 30-jährigen Geschichte je nach Verortung der Praxis oder Zielrichtung der Begriffsentwicklung durch weitere theoretische Konzepte erweitert und ergänzt wurde. Um dem postulierten Ziel des wissenschaftlichen Anspruchs gerecht zu werden, besteht eine Zielsetzung des Arbeitskreises „Interpretative Forschung“ in einer Auseinandersetzung mit den Verflechtungen und Verträglichkeiten theoretischer Basiskonzepte und ''Denkfiguren'' für die mathematikdidaktische Forschung. Diese methodologische Diskussion soll in enger Beziehung zum wissenschaftlichen Diskurs außerhalb der mathematikdidaktischen Forschung geführt werden.
Die interpretative Forschung  ist dem qualitativen Forschungsparadigma zuzuordnen und beruft sich für die Rekonstruktionen des Unterrichtsgeschehens „aus der Binnenperspektive der Handelnden“ (Maier/Voigt 1991, S. 8) auf die hermeneutischen Traditionen der Sozial- und Geisteswissenschaften. Die interpretative Forschung nimmt eine „beschreibende Funktion“ (ebd., S. 9) ein, die mit dem Ziel einer Ausarbeitung theoretischer Konstrukte zum begründeten Verstehen der Handlungsprozesse und Funktionsweisen dieser Alltagspraxis verbunden ist und gerade in dieser rekonstruktiven Haltung Ansatzpunkte zur Veränderung und zur Etablierung neuer Unterrichtswirklichkeiten sieht. Ein wesentliches Betätigungsfeld des zu gründenden Arbeitskreises sind Arbeitstagungen mit gemeinsamen Interpretationssitzungen zu Dokumenten mathematischer Entwicklungsprozesse bzw. aus dem Alltag der Lehr-Lern-Praxis zur Etablierung und Wahrung einer interpretativen Forschungspraxis mit methodisch kontrollierter Analyseverfahren ohne implizite Bewertung der rekonstruierten Wirklichkeiten.<br />
Die interpretative Forschung  ist dem qualitativen Forschungsparadigma zuzuordnen und beruft sich für die Rekonstruktionen des Unterrichtsgeschehens „aus der Binnenperspektive der Handelnden“ (Maier/Voigt 1991, S. 8) auf die hermeneutischen Traditionen der Sozial- und Geisteswissenschaften. Die interpretative Forschung nimmt eine beschreibende Funktion ein, die mit dem Ziel einer Ausarbeitung theoretischer Konstrukte zum begründeten Verstehen der Handlungsprozesse und Funktionsweisen dieser Alltagspraxis verbunden ist und gerade in dieser rekonstruktiven Haltung Ansatzpunkte zur Veränderung und zur Etablierung neuer Unterrichtswirklichkeiten sieht. Ein wesentliches Betätigungsfeld des zu gründenden Arbeitskreises sind Arbeitstagungen mit gemeinsamen Interpretationssitzungen zu Dokumenten mathematischer Entwicklungsprozesse bzw. aus dem Alltag der Lehr-Lern-Praxis zur Etablierung und Wahrung einer interpretativen Forschungspraxis mit methodisch kontrollierter Analyseverfahren ohne implizite Bewertung der rekonstruierten Wirklichkeiten.<br />
Das mathematikdidaktische Forschungsfeld ist in den letzten 30 Jahren breiter geworden. Auch wenn die schulische Alltagspraxis noch immer ein Schwerpunkt der interpretativ orientierten Forschungsprojekte ausmacht, so lassen sich doch zahlreiche Projekte finden, die diesen Rahmen verlassen und z.B. auch mathematische Entwicklungsprozesse in anderen sozialen Institutionen betrachten. Dieser Entwicklung kommen wir in der Namensgebung des neu zu gründenden Arbeitskreises nach, indem wir mit „Interpretative Forschung in der Mathematikdidaktik“ auf den Zusatz „Unterricht“ verzichten.
===Forschungsfeld===
Das mathematikdidaktische Forschungsfeld ist in den letzten 30 Jahren breiter geworden. Auch wenn die schulische Alltagspraxis noch immer ein Schwerpunkt der interpretativ orientierten Forschungsprojekte ausmacht, so lassen sich doch zahlreiche Projekte finden, die diesen Rahmen verlassen und z.B. auch mathematische Entwicklungsprozesse in anderen sozialen Institutionen betrachten. Dieser Entwicklung kommen wir in der Namensgebung des neu zu gründenden Arbeitskreises nach, indem wir mit ''Interpretative Forschung in der Mathematikdidaktik'' auf den Zusatz ''Unterricht'' verzichten.


=== Literatur ===
=== Literatur ===