Frank Schumann: Unterschied zwischen den Versionen

[unmarkierte Version][unmarkierte Version]
(→‎Kurzvita: Verlinkung Uni Jena)
Zeile 148: Zeile 148:
* '''Potenzgleichungen'''. In diesem Lernvideo zeige ich, wie man einfache Potenzgleichungen der Form x^n = a (n ganzzahlig) graphisch-numerisch lösen kann. Ich empfehle, sich zuvor das Anleitungsvideo "Potenzfunktionen" und die Lernvideos "Berechnungen an Potenzfunktionen - Grundaufgaben 1 und 2" anzusehen. Hierzu wird von mir die Mathematiksoftware Geogebra mit dem CAS-Modul genutzt.
* '''Potenzgleichungen'''. In diesem Lernvideo zeige ich, wie man einfache Potenzgleichungen der Form x^n = a (n ganzzahlig) graphisch-numerisch lösen kann. Ich empfehle, sich zuvor das Anleitungsvideo "Potenzfunktionen" und die Lernvideos "Berechnungen an Potenzfunktionen - Grundaufgaben 1 und 2" anzusehen. Hierzu wird von mir die Mathematiksoftware Geogebra mit dem CAS-Modul genutzt.
* '''Der Logarithmus als Zahl'''. In diesem Anleitungsvideo stelle ich ein GeoGebra-Arbeitsblatt vor, welches die Einführung des Logarithmus als eine Umkehrung des Potenzierens unterstützen soll. Das Arbeitsblatt soll zur Selbstkontrolle für Schülerinnen und Schüler dienen. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Der Logarithmus als Zahl'''. In diesem Anleitungsvideo stelle ich ein GeoGebra-Arbeitsblatt vor, welches die Einführung des Logarithmus als eine Umkehrung des Potenzierens unterstützen soll. Das Arbeitsblatt soll zur Selbstkontrolle für Schülerinnen und Schüler dienen. Hierzu wird von mir die Mathematiksoftware Geogebra genutzt.
* '''Vertiefende Aufgaben zu Potenzen und Logarithmen'''. In diesem Lernvideo werden drei Aufgaben zur Vertiefung der Begriffe Potenz und Logarithmus vorgestellt. In Aufgabe 1 geht es darum, ob Logarithmen rationale Zahlen darstellen. In Aufgabe 2 geht es um den Beweis eines Logarithmengesetzes und in Aufgabe 3 soll der Zusammenhang zwischen den Operationen Potenzieren, Radizieren und Logarithmieren durch Beispiele veranschaulicht werden. Dabei geht es insbesondere um den Zusammenhang von Operation und Umkehroperation.


===Problemlösen===
===Problemlösen===
447

Bearbeitungen