1.053
Bearbeitungen
Achtung: diese Seite wird nur zu Testzwecken betrieben. Hier gelangen Sie zur Madipedia-Website: https://madipedia.de
[gesichtete Version] | [gesichtete Version] |
Zeile 63: | Zeile 63: | ||
===[[Heinrich Winand Winter|Heinrich Winter]]=== | ===[[Heinrich Winand Winter|Heinrich Winter]]=== | ||
[[Heinrich Winand Winter|Heinrich Winter]] stellt im Zusammenhang mit dem Erscheinen von Heymanns Konzept ein eigenes Konzept, das er aus seinem Selbstverständnis des Mathematikunterrichts begründet, <ref>[Winter 1995]</ref> was sich auch in | [[Heinrich Winand Winter|Heinrich Winter]] stellt im Zusammenhang mit dem Erscheinen von Heymanns Konzept ein eigenes Konzept vor, das er aus seinem Selbstverständnis und seiner profunden Kenntnis des Mathematikunterrichts heraus (auch exemplarisch) begründet, <ref>[Winter 1995]</ref> was sich auch in der Unterüberschrift ''„Was ist mathematische Allgemeinbildung?“'' zeigt. Hier sei nur Folgendes aus seinem Diskussionsbeitrag referiert: <ref>[Winter 1995, 37]</ref> | ||
:: Da sich Schulunterricht – ungeachtet der berechtigten Forderung nach interdisziplinären Aktivitäten – als Fachunterricht versteht, muß jedes Fach der allgemeinbildenden Schule öffentlich aufweisen und begründen, inwieweit es für Allgemeinbildung unentbehrlich ist. Das kann nur als eine permanente Aufgabe verstanden werden. | :: Da sich Schulunterricht – ungeachtet der berechtigten Forderung nach interdisziplinären Aktivitäten – als Fachunterricht versteht, muß jedes Fach der allgemeinbildenden Schule öffentlich aufweisen und begründen, inwieweit es für Allgemeinbildung unentbehrlich ist. Das kann nur als eine permanente Aufgabe verstanden werden.<br /><br /> | ||
:: Für den Mathematikunterricht an allgemeinbildenden Schulen (bis zjm Abitur) soll nun skizziert werden, in welcher Weise er für Allgemeinbildung unersetzbar ist: | :: Für den Mathematikunterricht an allgemeinbildenden Schulen (bis zjm Abitur) soll nun skizziert werden, in welcher Weise er für Allgemeinbildung unersetzbar ist: | ||
:: Der Mathematikunterricht sollte anstreben, die folgenden drei Grunderfahrungen, die vielfältig miteinander verknüpft sind, zu ermöglichen: | :: Der Mathematikunterricht sollte anstreben, die folgenden drei Grunderfahrungen, die vielfältig miteinander verknüpft sind, zu ermöglichen: | ||
Zeile 71: | Zeile 71: | ||
:# in der Auseinandersetzung mit Aufgaben Problemlösefähigkeiten, die über die Mathematik hinausgehen (heuristische Fähigkeiten), zu erwerben. | :# in der Auseinandersetzung mit Aufgaben Problemlösefähigkeiten, die über die Mathematik hinausgehen (heuristische Fähigkeiten), zu erwerben. | ||
Der im zweiten Punkt genannte Aspekt von Mathematik als „Welt eigener Art“ greift die von Wittenberg so genannte „Mathematik als Wirklichkeit sui generis“ auf. <ref>[Wittenberg 1990]</ref> | Der im zweiten Punkt genannte Aspekt von Mathematik als „Welt eigener Art“ greift die von Wittenberg so genannte „Mathematik als Wirklichkeit sui generis“ auf. <ref>[Wittenberg 1990]</ref> | ||
== Literatur == | == Literatur == | ||
* Heymann, Hans Werner [1995]: ''Acht Thesen zum allgemeinbildenden Mathematikunterricht. Eine komprimierte Zusammenfassung der Habilitationsschrift.'' In: Mitteilungen der Gesellschaft für Didaktik der Mathematik, Nr. 61, Dezember 1995, 24 – 25. | * Heymann, Hans Werner [1995]: ''Acht Thesen zum allgemeinbildenden Mathematikunterricht. Eine komprimierte Zusammenfassung der Habilitationsschrift.'' In: Mitteilungen der Gesellschaft für Didaktik der Mathematik, Nr. 61, Dezember 1995, 24 – 25. |