Funktion: mengentheoretische Auffassung: Unterschied zwischen den Versionen

K
[gesichtete Version][gesichtete Version]
Zeile 92: Zeile 92:
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
* Konsequenz: Es gibt in formaler Hinsicht keinen Unterschied zwischen „Funktion“ und „Funktionsgraph“, wenn man beide so wie oben mengentheoretisch definiert. Das hat zur weiteren Konsequenz, dass der „Funktionsgraph“ bereits eine Funktion '''ist''' und man in der Tat beispielsweise eine ''„Parabel als quadratische Funktion“'' auffassen kann. <ref>Vgl. die in der [[Funktion: mengentheoretische Auffassung#Übersicht|Übersicht]] erwähnte [[Funktion: kulturhistorische Aspekte|kulturhistorische Entstehung und Entwicklung des Funktionsbegriffs]].</ref> Auch der von einem [[Funktionenplotter]] erzeugte [[Funktionenplotter#Funktionsplot|Funktionsplot]] kann damit als eine „Funktion“ aufgefasst werden. <ref>Genauer: Sowohl die erwähnte „Parabel“ als auch die Funktionsplots sind eigentlich „Darstellungen“ einer Funktion, was die Frage aufwirft, worin der Unterschied zwischen einer Darstellung und dem dadurch Dargestellten besteht.</ref>
===Fazit===
===Fazit===
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs auf und leiten ueber zu den vielen . <ref>Vgl. [Herget et. al. 2020].</ref> <br />
Diese Betrachtungen führen zunächst zu einer „Weite“ des mit „Funktion“ bezeichneten Begriffs und leiten ueber zu den vielen „[[Funktion: viele Gesichter|vielen Gesichtern von Funktionen]]“. <ref>Vgl. [Herget et. al. 2020].</ref> <br />
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
'''Aber''': Zugleich ist anzumerken, dass die mengentheoretische Auffassung von ''„Funktion als rechtseindeutiger Relation“'' auf höherem Niveau beweistechnisch sehr gute Möglichkeiten eröffnet und dass auch auf „elementarem“ Niveau (und damit im Mathematikunterricht) in „sauberer“ Sprech- und Schreibweise möglichst unterschieden werden sollte zwischen:  
* ''die Funktion'' <math>f</math>
* ''die Funktion'' <math>f</math>