Baustelle:Relation: Unterschied zwischen den Versionen

keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Zeile 13: Zeile 13:
  <math>(a,b):=\{\{a\},\{a,b\}\}</math>|| <math>(a,b)</math> heißt „'''geordnetes Paar'''“.<br />
  <math>(a,b):=\{\{a\},\{a,b\}\}</math>|| <math>(a,b)</math> heißt „'''geordnetes Paar'''“.<br />
Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass <math>(a,b)=(b,a)\Leftrightarrow a=b</math> gilt.<br />
Es lässt sich dann mit Bezug auf die Definition der Gleichheit von zwei Mengen beweisen, dass <math>(a,b)=(b,a)\Leftrightarrow a=b</math> gilt.<br />
<math>(a,b)</math> lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.
<math>(a,b)</math> lässt sich rekursiv zum geordneten <math>n</math>-Tupel <math>({{a}_{1}},{{a}_{2}},\ldots ,{{a}_{n-1}},{{a}_{n}})</math> verallgemeinern.<br />Spezielle Namen sind für <math>n=3</math> „'''Tripel'''“ und für <math>n=4</math> „'''Quadrupel'''“.
|-
|-
| Für beliebige Mengen <math>A, B</math> gilt:: <math>A\times B:=\{(a,b)|a\in A\wedge b\in B\}</math> || <math>A\times B</math> heißt „'''Produktmenge'''“ oder „'''kartesisches Produkt'''“ (von <math>A</math> und <math>B</math>).<br />
| Für beliebige Mengen <math>A, B</math> gilt:: <math>A\times B:=\{(a,b)|a\in A\wedge b\in B\}</math> || <math>A\times B</math> heißt „'''Produktmenge'''“ oder „'''kartesisches Produkt'''“ (von <math>A</math> und <math>B</math>).<br />
<math>A\times B</math> lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern.
<math>A\times B</math> lässt sich rekursiv zu <math>{{A}_{1}}\times \ldots \times {{A}_{n-1}}\times {{A}_{n}}</math> verallgemeinern.
|-
|-
| Beispiel || Beispiel
| Für alle <math>n\in {{\mathbb{N}}^{*}}\text{ }\!\!\backslash\!\!\text{ }\{1\}</math> ist eine '''<math>n</math>-stellige Relation''' eine Menge, die nur aus geordneten <math>n</math>-Tupeln besteht.  || 2-stellige Relationen heißen auch „'''binäre''' Relationen“, sie bestehen damit nur aus geordneten Paaren.
|-
|-
| Beispiel || Beispiel
| Beispiel || Beispiel